[1] TANKUS A, YESHURUN Y. Convexity-based visual camouflage breaking[J]. Computer Vision and Image Understanding, 2001, 82(3): 208-237.
[2] NAGAPPA U, NAGABHUSAN P. Camouflage defect identification: a novel approach[C]//Proceedings of the 9th International Conference on Information Technology, Bhubaneswar, India, 2006: 145-148.
[3] SENGOTTUVELAN P, AMITABH W, SHANMUGAM A. Performance of decamouflaging through exploratory image analysis[C]//Proceedings of the 2008 First International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, 2008: 6-10.
[4] LE T N, NGUYEN T V, NIE Z, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184(1): 45-46.
[5] FAN D P, JI G P, SUN G L, et al. Camouflaged object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2774-2784.
[6] YAN J, LE T N, NGUYEN K D, et al. MirrorNet: bio-inspired adversarial attack for camouflaged object segmentation[J]. IEEE Access, 2021, 9(1): 43290-43300.
[7] DONG B, ZHUGE M C, WANG Y X, et al. Towards accurate camouflaged object detection with mixture convolution and interactive fusion[EB/OL]. [2022-10-21]. https://arxiv.org/pdf/2101.05687.pdf.
[8] REN J J, HU X W, ZHU L, et al. Deep texture-aware features for camouflaged object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(3): 1157-1167.
[9] MEI H, JI G P, WEI Z Q, et al. Camouflaged object segmentation with distraction mining[EB/OL]. [2022-10-21]. https://arxiv.org/pdf/2104.10475.pdf.
[10] GAO S H, CHENG M M, ZHAO K, et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[11] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[12] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[14] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 404-419.
[15] FAN D P, JI G P, CHENG M M, et al. Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6024-6042.
[16] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[17] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis and 2018 International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.
[18] WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3902-3911.
[19] FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2020: 263-273.
[20] CHEN S, FU Y. Progressively guided alternate refinement network for RGB-D salient object detection[C]//European Conference on Computer Vision. Cham: Springer, 2020: 520-538.
[21] PANG Y, ZHAO X, ZHANG L, et al. Multi-scale interactive network for salient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 9410-9419.
[22] MONDAL A. Camouflage design, assessment and breaking techniques: a survey[J]. Multimedia Systems, 2022, 28(1): 141-160.
[23] PERAZZI F, KR?HENBüHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 733-740.
[24] FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 698-704.
[25] FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4558-4567.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[27] SKUROWSKI P, ABDULAMEER H, B?ASZCZYK J, et al. Animal camouflage analysis: chameleon database[DB/OL]. [2022-10-21]. http://kgwisc.aei.polsl.pl/index.php/en/dataset/63-animal-camouflage-analysis.
[28] ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8778-8787.
[29] XU X, CHEN S, LV X, et al. Guided multi-scale refinement network for camouflaged object detection[J]. Multimedia Tools and Applications, 2023, 82(4): 5785-5801.
[30] ZHANG C, LI X, LI X. Decode after filtering: a network for camouflage object segmentation[J]. Soft Computing, 2022, 26(4): 2033-2043. |