[1] TIAN Y, KANADE T, COHN J F. Recognizing action units for facial expression analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 19.
[2] ZHANG F, ZHANG T, MAO Q, et al. Joint pose and expression modeling for facial expression recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 3359-3368.
[3] SHAN C F, GONG S G, MCOWAN P W. Robust facial expression recognition using local binary patterns[C]//IEEE International Conference on Image Processing. Genova, Italy:IEEE, 2005.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego, CA, USA: IEEE, 2005: 886-893.
[5] WOLD S, GELADI P, ESBENSEN K, et al. Multi-way principal components-and PLS-analysis[J]. Journal of Chemometrics, 1987, 1(1): 41-56.
[6] LI S, DENG W, DU J. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017: 2584-2593.
[7] BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction. Tokyo, Japan: ACM, 2016: 279-283.
[8] MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2019, 10(1): 18-31.
[9] WANG K, PENG X, YANG J, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 6896-6905.
[10] FARZANEH A H, QI X. Facial expression recognition in the wild via deep attentive center loss[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA: IEEE, 2021: 2401-2410.
[11] 张为, 李璞. 基于注意力机制的人脸表情识别网络[J]. 天津大学学报 (自然科学与工程技术版), 2022, 55(7): 706-713.
ZHANG W, LI P. Facial expression recognition network based on attention mechanism[J]. Journal of Tianjin University (Science and Technology), 2022, 55(7): 706-713.
[12] WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069.
[13] 郑剑, 郑炽, 刘豪, 等. 融合局部特征与两阶段注意力权重学习的面部表情识别[J]. 计算机应用研究, 2022, 39(3): 889-894.
ZHENG J, ZHENG C, LIU H, et al. Deep convolutional neural network fusing local feature and two-stage attention weight learning for facial expression recognition[J]. Applications Research of Computers, 2022, 39(3): 889-894.
[14] GERA D, BALASUBRAMANIAN S. Landmark guidance independent spatio-channel attention and complementary context information based facial expression recognition[J]. Pattern Recognition Letters, 2021, 145: 58-66.
[15] HAN D, YUN S, HEO B, et al. Rethinking channel dimensions for efficient model design[J]. arXiv:2007.00992, 2020.
[16] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA: IEEE, 2021: 3138-3147.
[17] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[18] CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 2019: 1971-1980.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//15th European Conference on Computer Vision (ECCV 2018). Cham: Springer International Publishing, 2018: 3-19.
[20] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[21] XU J, ZOU Y, TAN Y, et al. Chip pad inspection method based on an improved YOLOv5 algorithm[J]. Sensors, 2022, 22(17): 6685.
[22] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 6848-6856.
[23] MA H, YANG H, HUANG D. Boundary guided context aggregation for semantic segmentation[J]. arXiv:2110.14587, 2021.
[24] ZHANG Y, WANG C, DENG W. Relative uncertainty learning for facial expression recognition[C]//Advances in Neural Information Processing Systems, 2021: 17616-17627.
[25] SHE J, HU Y, SHI H, et al. Dive into ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition[J].arXiv:2104.00232, 2021.
[26] FAN X, DENG Z, WANG K, et al. Learning discriminative representation for facial expression recognition from uncertainties[C]//2020 IEEE International Conference on Image Processing (ICIP). Abu Dhabi, United Arab Emirates: IEEE, 2020: 903-907.
[27] WEN Z, LIN W, WANG T, et al. Distract your attention: multi-head cross attention network for facial expression recognition[J]. arXiv:2109.07270, 2021.
[28] GUO Y, ZHANG L, HU Y, et al. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition[C]//European Conference on Computer Vision (ECCV 2016). Cham: Springer International Publishing, 2016: 87-102.
[29] MA F, SUN B, LI S. Facial expression recognition with visual transformers and attentional selective fusion[J]. IEEE Transactions on Affective Computing, 2023, 14(2): 1236-1248.
[30] LI H, SUI M, ZHAO F, et al. MVT: mask vision transformer for facial expression recognition in the wild[J]. arXiv:2106. 04520, 2021.
[31] 封红旗, 黄伟铠, 张登辉. 结合显著特征筛选和ViT的面部表情识别方法[J]. 计算机工程与应用, 2023, 59(22):136-143.
FENG H Q, HUANG W K, ZHANG D H. Facial expression recognition with distinguishing feature filtering and ViT[J]. Computer Engineering and Applications, 2023, 59(22): 136-143.
[32] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 618-626.
[33] MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |