Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (4): 75-88.DOI: 10.3778/j.issn.1002-8331.2306-0406
• Research Hotspots and Reviews • Previous Articles Next Articles
MENG Fanxing, HAN Meng, LI Chunpeng, ZHANG Ruihua, HE Feifei
Online:
2024-02-15
Published:
2024-02-15
孟凡兴,韩萌,李春鹏,张瑞华,何菲菲
MENG Fanxing, HAN Meng, LI Chunpeng, ZHANG Ruihua, HE Feifei. Survey of Concept Drift Detection and Adaptation Methods[J]. Computer Engineering and Applications, 2024, 60(4): 75-88.
孟凡兴, 韩萌, 李春鹏, 张瑞华, 何菲菲. 概念漂移检测与适应方法综述[J]. 计算机工程与应用, 2024, 60(4): 75-88.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2306-0406
[1] WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[J]. Machine Learning, 1996, 23: 69-101. [2] WAHAB O A. Intrusion detection in the IoT under data and concept drifts: online deep learning approach[J]. IEEE Internet of Things Journal, 2022, 9(20): 19706-19716. [3] WANG H, FAN W, YU P S, et al. Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003: 226-235. [4] GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]//Proceedings of the 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Sep 29-Oct 1, 2004. Berlin, Heidelberg: Springer, 2004: 286-295. [5] LU J, LIU A, DONG F, et al. Learning under concept drift: a review[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(12): 2346-2363. [6] HAN M, CHEN Z, LI M, et al. A survey of active and passive concept drift handling methods[J]. Computational Intelligence, 2022, 38(4): 1492-1535. [7] SATO D M V, DE FREITAS S C, BARDDAL J P, et al. A survey on concept drift in process mining[J]. ACM Computing Surveys, 2021, 54(9): 1-38. [8] AGRAHARI S, SINGH A K. Concept drift detection in data stream mining: a literature review[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10): 9523-9540. [9] GAMA J, ?LIOBAITE I, BIFET A, et al. A survey on concept drift adaptation[J]. ACM Computing Surveys, 2014, 46(4): 1-37. [10] HU H, KANTARDZIC M, SETHI T S. No free lunch theorem for concept drift detection in streaming data classification: a review[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10(2): e1327. [11] KHAMASSI I, SAYED-MOUCHAWEH M, HAMMAMI M, et al. Discussion and review on evolving data streams and concept drift adapting[J]. Evolving Systems, 2018, 9: 1-23. [12] SUAREZ-CETRULO A L, QUINTANA D, CERVANTES A. A survey on machine learning for recurring concept drifting data streams[J]. Expert Systems with Applications, 2023, 213: 118934. [13] GUO H, LI H, REN Q, et al. Concept drift type identification based on multi-sliding windows[J]. Information Sciences, 2022, 585: 1-23. [14] WANG S, MACHIDA F. A robustness evaluation of concept drift detectors against unreliable data streams[C]//Proceedings of the 2021 IEEE 7th World Forum on Internet of Things, 2021: 569-574. [15] KABIR M A, BEGUM S, AHMED M U, et al. CODE: a moving-window-based framework for detecting concept drift in software defect prediction[J]. Symmetry, 2022, 14(12): 2508. [16] BIFET A, GAVALDA R. Learning from time-changing data with adaptive windowing[C]//Proceedings of the 2007 SIAM International Conference on Data Mining, 2007: 443-448. [17] BAENA-GARCIA M, DEL CAMPO-áVILA J, FIDALGO R, et al. Early drift detection method[C]//Proceedings of the 4th International Workshop on Knowledge Discovery from Data Streams, 2006: 77-86. [18] MACIEL B I F, HIDALGO J I G, DE BARROS R S M. An ultimately simple concept drift detector for data streams[C]//Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics, 2021: 625-630. [19] NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C]//Proceedings of the 10th International Conference on Discovery Science. Berlin, Heidelberg: Springer, 2007: 264-269. [20] DE LIMA CABRAL D R, DE BARROS R S M. Concept drift detection based on Fisher’s exact test[J]. Information Sciences, 2018, 442: 220-234. [21] COLLELL G, PRELEC D, PATIL K R. A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data[J]. Neurocomputing, 2018, 275: 330-340. [22] CANO A, KRAWCZYK B. Kappa updated ensemble for drifting data stream mining[J]. Machine Learning, 2020, 109: 175-218. [23] YANG L, MANIAS D M, SHAMI A. PWPAE: an ensemble framework for concept drift adaptation in IoT data streams[C]//Proceedings of the 2021 IEEE Global Communications Conference, 2021: 1-6. [24] KOZAL J, GUZY F, WOZNIAK M. Employing chunk size adaptation to overcome concept drift[J]. arXiv:2110.12881, 2021. [25] YU H, ZHANG Q, LIU T, et al. Meta-ADD: a meta-learning based pre-trained model for concept drift active detection[J]. Information Sciences, 2022, 608: 996-1009. [26] JAIN M, KAUR G, SAXENA V. A K-means clustering and SVM based hybrid concept drift detection technique for network anomaly detection[J]. Expert Systems with Applications, 2022, 193: 116510. [27] PESARANGHADER A, VIKTOR H L. Fast Hoeffding drift detection method for evolving data streams[C]//Proceedings of the 2016 European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Sep 19-23, 2016: 96-111. [28] PESARANGHADER A, VIKTOR H L, PAQUET E. McDiarmid drift detection methods for evolving data streams[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, 2018: 1-9. [29] BAIDARI I, HONNIKOLL N. Bhattacharyya distance based concept drift detection method for evolving data stream[J]. Expert Systems with Applications, 2021, 183: 115303. [30] GUO H, LI H, SUN N, et al. Concept drift detection and accelerated convergence of online learning[J]. Knowledge and Information Systems, 2023, 65(3): 1005-1043. [31] LI P, WU X, HU X, et al. Learning concept-drifting data streams with random ensemble decision trees[J]. Neurocomputing, 2015, 166: 68-83. [32] SUN Y, DAI H. Constructing accuracy and diversity ensemble using Pareto-based multi-objective learning for evolving data streams[J]. Neural Computing and Applications, 2021, 33: 6119-6132. [33] LEE S, PARK S H. Concept drift modeling for robust autonomous vehicle control systems in time-varying traffic environments[J]. Expert Systems with Applications, 2022, 190: 116206. [34] GONCALVES P M, CHARTIER S, DE BARROS R S M. Statistical tests to identify virtual concept drifts[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, 2021: 1-8. [35] KORYCKI ?, KRAWCZYK B. Concept drift detection from multi-class imbalanced data streams[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering, 2021: 1068-1079. [36] YU H, LIU W, LU J, et al. Detecting group concept drift from multiple data streams[J]. Pattern Recognition, 2023, 134: 109113. [37] 袁泉, 郭江帆. 新型含噪数据流集成分类的算法[J]. 计算机应用, 2018, 38(6): 1591-1595. YUAN Q, GUO J F. New ensemble classification algorithm for data stream with noise[J]. Journal of Computer Applications, 2018, 38(6): 1591-1595. [38] CASTELLANI A, SCHMITT S, HAMMER B. Task-sensitive concept drift detector with constraint embedding[C]//Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence, 2021. [39] KLIKOWSKI J. Concept drift detector based on centroid distance analysis[C]//Proceedings of the 2022 International Joint Conference on Neural Networks, 2022: 1-8. [40] NIKPOUR S, ASADI S. A dynamic hierarchical incremental learning-based supervised clustering for data stream with considering concept drift[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(6): 2983-3003. [41] LI W, YANG X, LIU W, et al. DDG-DA: data distribution generation for predictable concept drift adaptation[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 4092-4100. [42] GRECO S, CERQUITELLI T. Drift lens: real-time unsupervised concept drift detection by evaluating per-label embedding distributions[C]//Proceedings of the 2021 International Conference on Data Mining Workshops, 2021: 341-349. [43] ZHENG X, LI P, HU X, et al. Semi-supervised classification on data streams with recurring concept drift and concept evolution[J]. Knowledge-Based Systems, 2021, 215: 106749. [44] BIBINBE A M S N, MAHAMADOU A J, MBOUOPDA M F, et al. DragStream: an anomaly and concept drift detector in univariate data streams[C]//Proceedings of the 2022 IEEE International Conference on Data Mining Workshops, 2022: 842-851. [45] MICEVSKA S, AWAD A, SAKR S. SDDM: an interpretable statistical concept drift detection method for data streams[J]. Journal of Intelligent Information Systems, 2021, 56: 459-484. [46] CASADO F E, LEMA D, CRIADO M F, et al. Concept drift detection and adaptation for federated and continual learning[J]. Multimedia Tools and Applications, 2022, 81(3): 3397-3419. [47] WU O, KOH Y S, DOBBIE G, et al. Nacre: proactive recurrent concept drift detection in data streams[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, 2021: 1-8. [48] QIAO H, NOVIKOV B, BLECH J O. Concept drift analysis by dynamic residual projection for effectively detecting Botnet cyber-attacks in IoT scenarios[J]. IEEE Transactions on Industrial Informatics, 2021, 18(6): 3692-3701. [49] GULCAN B E, CAN F. Implicit concept drift detection for multi-label data streams[J]. arXiv: 2202. 00070, 2022. [50] OKAWA Y, KOBAYASHI K. Concept drift detection via boundary shrinking[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, 2021: 1-8. [51] CAVALHERIO L P, BRITTO A D S, BARDDAL J P, et al. Dynamically selected ensemble for data stream classification[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, 2021: 1-7. [52] KOLTER J Z, MALOOF M A. Dynamic weighted majority: an ensemble method for drifting concepts[J]. The Journal of Machine Learning Research, 2007, 8: 2755-2790. [53] ELWELL R, POLIKAR R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10): 1517-1531. [54] BRZEZINSKI D, STEFANOWSKI J. Accuracy updated ensemble for data streams with concept drift[C]//Proceedings of the 6th International Conference on Hybrid Artificial Intelligent Systems, Wroclaw, May 23-25, 2011. Berlin, Heidelberg: Springer, 2011: 155-163. [55] BRZEZINSKI D, STEFANOWSKI J. Reacting to different types of concept drift: the accuracy updated ensemble algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 25(1): 81-94. [56] BRZEZINSKI D, STEFANOWSKI J. Combining block-based and online methods in learning ensembles from concept drifting data streams[J]. Information Sciences, 2014, 265: 50-67. [57] MYINT T M, LYNN K T. Handling the concept drifts based on ensemble learning with adaptive windows[J]. IAENG International Journal of Computer Science, 2021, 48(3): 1-16. [58] ABBASI A, JAVED A R, CHAKRABORTY C, et al. ElStream: an ensemble learning approach for concept drift detection in dynamic social big data stream learning[J]. IEEE Access, 2021, 9: 66408-66419. [59] LIU A, LU J, ZHANG G. Diverse instance-weighting ensemble based on region drift disagreement for concept drift adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 293-307. [60] JINDAL A, GUPTA P, SENGUPTA D. Enhash: a fast streaming algorithm for concept drift detection[J]. arXiv: 2011.03729, 2020. [61] ZHAO L, ZHANG Y, JI Y, et al. Heterogeneous drift learning: classification of mix-attribute data with concept drifts[C]//Proceedings of the 2022 IEEE 9th International Conference on Data Science and Advanced Analytics, 2022: 1-10. [62] YANG C, CHEUNG Y, DING J, et al. Concept drift-tolerant transfer learning in dynamic environments[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(8): 3857-3871. [63] GRZYB J, KLIKOWSKI J, WOZNIAK M. Hellinger distance weighted ensemble for imbalanced data stream classification[J]. Journal of Computational Science, 2021, 51: 101314. [64] GOEL K, BATRA S. Two-level pruning based ensemble with abstained learners for concept drift in data streams[J]. Expert Systems, 2021, 38(3): e12661. [65] KHEZRI S, TANHA J, AHMADI A, et al. A novel semi-supervised ensemble algorithm using a performance-based selection metric to non-stationary data streams[J]. Neurocomputing, 2021, 442: 125-145. [66] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [67] PELOSSOF R, JONES M, VOVSHA I, et al. Online coordinate boosting[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, 2009: 1354-1361. [68] DAI W, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning, 2007: 193-200. [69] SANTOS S G T C, GONCALVES JUNIOR P M, SILVA G D S, et al. Speeding up recovery from concept drifts[C]//Proceedings of the 2014 European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, Sep 15-19, 2014. Berlin, Heidelberg: Springer, 2014: 179-194. [70] BAYRAM B, KOROGLU B, GONEN M. Improving fraud detection and concept drift adaptation in credit card transactions using incremental gradient boosting trees[C]//Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications, 2020: 545-550. [71] WANG K, LU J, LIU A, et al. Elastic gradient boosting decision tree with adaptive iterations for concept drift adaptation[J]. Neurocomputing, 2022, 491: 288-304. [72] BAIDARI I, HONNIKOLL N. Accuracy weighted diversity-based online boosting[J]. Expert Systems with Applications, 2020, 160: 113723. [73] HONNIKOLL N, BAIDARI I. Mean error rate weighted online boosting method[J]. The Computer Journal, 2023, 66(1): 1-15. [74] BAIER L, REIMOLD J, KUHL N. Handling concept drift for predictions in business process mining[C]//Proceedings of the 2020 IEEE 22nd Conference on Business Informatics, 2020: 76-83. [75] DONG F, LU J, SONG Y, et al. A drift region-based data sample filtering method[J]. IEEE Transactions on Cybernetics, 2021, 52(9): 9377-9390. [76] LOSING V, HAMMER B, WERSING H. Self-adjusting memory: how to deal with diverse drift types[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 4899-4903. [77] YU E, SONG Y, ZHANG G, et al. Learn-to-adapt: concept drift adaptation for hybrid multiple streams[J]. Neurocomputing, 2022, 496: 121-130. [78] GALMEANU H, ANDONIE R. Weighted incremental-decremental support vector machines for concept drift with shifting window[J]. Neural Networks, 2022, 152: 528-541. [79] LIU A, ZHANG G, WANG K, et al. Fast switch na?ve Bayes to avoid redundant update for concept drift learning[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, 2020: 1-7. [80] STRAAT M, ABADI F, KAN Z, et al. Supervised learning in the presence of concept drift: a modelling framework[J]. Neural Computing and Applications, 2022, 34(1): 101-118. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||