[1] 蔡肖, 陈志华, 盛斌. 基于移位窗口金字塔Transformer的遥感图像目标检测[J]. 计算机科学, 2023, 50(1): 105-113.
CAI X, CHEN Z H, SHENG B. SPT: swin pyramid Transformer for object detection of remote sensing[J]. Computer Science, 2019, 50(1): 105-113.
[2] 范新南, 严炜, 史朋飞, 等. 多尺度深度特征融合网络的遥感图像目标检测[J]. 遥感学报, 2022, 26(11): 2292-2303.
FAN X N, YAN W, SHI P F, et al. Remote sensing image target detection based on a multi-scale deep feature fusion network[J]. National Remote Sensing Bulletin, 2022, 26(11): 2292-2303.
[3] OSUNA E, FREUND R, GIROSIT F. Training support vector machines: an application to face detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1997: 130-136.
[4] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001: 511-518.
[5] KAYASAL U. Magnetometer aided inertial navigation system: modeling and simulation of a navigation system with an IMU and a magnetometer[M]. Turkey: National Defense Industry Press, 2009: 74-77.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1440-1448.
[8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[9] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2961-2969.
[10] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] GLENN J. YOLOv5[EB/OL]. (2020). https://github.com/ultralytics/yolov5.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[15] 汪西莉, 梁正印, 刘涛. 基于特征注意力金字塔的遥感图像目标检测方法[J]. 遥感学报, 2023, 27(2): 492-501.
WANG X L, LIANG Z Y, LIU T. Feature attention pyramid-based remote sensing image object detection method[J]. National Remote Sensing Bulletin, 2023, 27(2): 492-501.
[16] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2019, 17(5): 1112-1125.
[17] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2019, 17(5): 1102-1111.
[18] 李坤亚, 欧鸥, 刘广滨, 等. 改进YOLOv5的遥感图像目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 207-214.
LI K Y, OU O, LIU G B, et al. Target detection algorithm of remote sensing image based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(9): 207-214.
[19] 杨晨, 佘璐, 杨璐, 等. 改进YOLOv5的遥感影像目标检测算法[J]. 计算机工程与应用, 2023, 59(15): 76-86.
YANG C, SHE L, YANG L, et al. Improved YOLOv5 object detection algorithm for remote sensing images[J]. Computer Engineering and Applications, 2023, 59(15): 76-86.
[20] 刘涛, 丁雪妍, 张冰冰, 等. 改进YOLOv5的遥感图像检测方法[J]. 计算机工程与应用, 2023, 59(10): 253-261.
LIU T, DING X Y, ZHANG B B, et al. Improved YOLOv5 for remote sensing image detection [J]. Computer Engineering and Applications , 2023, 59(10): 253-261.
[21] 汪鹏, 辛雪静, 王利琴, 等. 基于YOLOv3的光学遥感图像目标检测算法[J]. 激光与光电子学进展, 2021, 58(20): 509-517.
WANG P, XIN X J, WANG L Q, et al. Object detection algorithm of optical remote sensing images based on YOLOv3[J]. Laser & Optoelectronics Progress, 2021, 58(20): 509-517.
[22] DONG X, QIN Y, GAO Y, et al. Attention-based multi-level feature fusion for object detection in remote sensing images[J]. Remote Sensing, 2022, 14(15): 3735.
[23] WANG J, GONG Z, LIU X, et al. Object detection based on adaptive feature-aware method in optical remote sensing images[J]. Remote Sensing, 2022, 14(15): 3616.
[24] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[25] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[26] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[27] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[28] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[29] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
[30] ZHANG Q L, YANG Y B. Sa-net: shuffle attention for deep convolutional neural networks[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 2235-2239.
[31] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[32] FENG C, ZHONG Y, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 3490-3499.
[33] CHEN Z, YANG C, LI Q, et al. Disentangle your dense object detector[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 4939-4948.
[34] GE Z, LIU S, WANG F, et al. Yolox: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. |