[1] 郭文明, 王腾亿. 类激活映射指导数据增强的细粒度图像分类[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1698-1704.
GUO W M, WANG T Y. Class activation mapping guided data augmentation for fine-grained visual classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(11): 1698-1704.
[2] 罗亚威, 于俊清. 可微风格搜索: 一种在线自动数据增强方法[J]. 计算机辅助设计与图形学学报, 2023, 35(4): 553-561.
LUO Y W , YU J Q. Differentiable style search: an online automatic data augmentation method[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(4): 553-561.
[3] BABADIAN R P, FAEZ K, AMIRI M, et al. Fusion of tactile and visual information in deep learning models for object recognition[J]. Information Fusion, 2023, 92: 313-325.
[4] LIU J, HE J, ZHENG Y, et al. A holistically-guided decoder for deep representation learning with applications to semantic segmentation and object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 11390-11406.
[5] LIU X, XU Q. Adaptive attention-based high-level semantic introduction for image caption[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(4): 1-22.
[6] GAJERA H K, NAYAK D R, ZAVERI M A. A comprehensive analysis of dermoscopy images for melanoma detection via deep CNN features[J]. Biomedical Signal Processing and Control, 2023, 79: 104186.
[7] CANZIANI A, PASZKE A, CULURCIELLO E. An analysis of deep neural network models for practical applications[J]. arXiv:1605.07678, 2016.
[8] DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[J]. arXiv:1708.04552, 2017.
[9] ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[J]. arXiv:1710.09412, 2017.
[10] YUN S, HAN D, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6023-6032.
[11] CHEN P, LIU S, ZHAO H, et al. Gridmask data augmentation[J]. arXiv:2001.04086, 2020.
[12] SINGH K K, LEE J Y. Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 3524-3533.
[13] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[14] 赵晓枫, 夏玉婷, 徐叶斌, 等. 地面红外目标数据联合增强方法[J]. 激光与红外, 2023, 53(7): 1117-1124.
ZHAO X F, XIA Y T, XU Y B, et al. Joint data augmentation method for ground infrared target[J]. Laser & Infrared, 2023, 53(7): 1117-1124.
[15] ANTONIOU A, STORKEY A, EDWARDS H. Data augmentation generative adversarial networks[J]. arXiv:1711. 04340, 2017.
[16] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[17] YIN X, LI Y, SHIN B S. DAGAN: a domain-aware method for image-to-image translations[J]. Complexity, 2020, 2020: 1-15.
[18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[19] WEI J, WANG Q Z, SONG X Q, et al. The status and challenges of image data augmentation algorithms[J]. Journal of Physics: Conference Series, 2023, 2456: 012041.
[20] GARWAY-HEATH D F, CAPRIOLI J, FITZKE F W, et al. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers[J]. Investigative Ophthalmology & Visual Science, 2000, 41(7): 1774-1782.
[21] 张浩, 杨坚华, 李启航, 等. 基于DDR-CycleGAN的红外图像数据增强[J]. 激光与红外, 2022, 52(4): 600-606.
ZHANG H, YANG J H , LI Q H , et al. Infrared image data enhancement based on DDR-CycleGAN[J]. Laser & Infrared, 2022, 52(4): 600-606.
[22] HAO X J, LIU L, YANG R J, et al. A review of data augmentation methods of remote sensing image target recognition[J]. Remote Sensing, 2023, 15(3): 827.
[23] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[24] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] 曾武, 朱恒亮, 邢树礼, 等. 显著性检测引导的图像数据增强方法[J]. 图学学报, 2023, 44(2): 260-270.
ZENG W, ZHU H L, XING S L, et al. Saliency detection-guided for image data augmentation[J]. Chinese Journal of Graphics, 2023, 44(2): 260-270.
[26] CAI L, YE Y, GAO X, et al. An improved visual SLAM based on affine transformation for ORB feature extraction[J]. Optik, 2021, 227: 165421.
[27] FEDOROV V, BALLESTER C. Affine non-local means image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2137-2148.
[28] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34.
LI D Y, LIU C Y. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8): 28-34.
[29] LASHIN A M Y, AOUF M K. Hadamard product of certain multivalent analytic functions with positive real parts[J]. Mathematics, 2022, 10(9): 1506. |