Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (20): 84-95.DOI: 10.3778/j.issn.1002-8331.2403-0135
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Rong, LIANG Xinyue
Online:
2024-10-15
Published:
2024-10-15
张荣,梁馨月
ZHANG Rong, LIANG Xinyue. Research on Fatigue Detection Methods for Aviation Personnel[J]. Computer Engineering and Applications, 2024, 60(20): 84-95.
张荣, 梁馨月. 航空人员疲劳检测方法研究[J]. 计算机工程与应用, 2024, 60(20): 84-95.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2403-0135
[1] RUDARI L, JOHNSON M, GESKE R, et al. Pilot perceptions on impact of crew rest regulations on safety and fatigue[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2016, 3(1): 1-16. [2] CALDWELL J A, MALLIS M M, CALDWELL J L, et al. Fatigue countermeasures in aviation[J]. Aviation, Space, and Environmental Medicine, 2009, 80(1): 29-59. [3] DAWSON D, NOY I Y, H?RM? M, et al. Modelling fatigue and the use of fatigue models in work settings[J]. Accident Analysis & Prevention, 2011, 43(2): 549-564. [4] MAY J F, BALDWIN C L. Driver fatigue: the importance of identifying causal factors of fatigue when considering detection and countermeasure technologies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2009, 12(3): 218-224. [5] HILL A S. The Chicago convention[J]. The North American Review, 1868, 107: 167-186. [6] RASHID H S J, PLACE C S, BRAITHWAITE G R. Eradicating root causes of aviation maintenance errors: introducing the AMMP[J]. Cognition, Technology & Work, 2014, 16(1): 71-90. [7] 李都厚, 刘群, 袁伟, 等. 疲劳驾驶与交通事故关系[J]. 交通运输工程学报, 2010, 10(2): 104-109. LI D H, LIU Q, YUAN W, et al. Relationship between fatigue driving and traffic accident[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 104-109. [8] 段振伟, 景国勋, 杨书召. 基于安全人机工程学的驾驶疲劳因素及其产生机理分析[J]. 河南理工大学学报 (自然科学版), 2008, 27(1): 21-27. DUAN Z W, JING G X, YANG S Z. Analysis of driving fatigue and mechanism based on safety drgonamics[J]. Journal of Henan Polytechnic University (Natural Science), 2008, 27(1): 21-27. [9] 张瑞, 朱天军, 邹志亮, 等. 驾驶员疲劳驾驶检测方法研究综述[J]. 计算机工程与应用, 2022, 58(21): 53-66. ZHANG R, ZHU T J, ZOU Z L, et al. Review of research on driver fatigue driving detection methods[J]. Computer Engineering and Applications, 2022, 58(21): 53-66. [10] BALKIN T J, WESENSTEN N J. Differentiation of sleepiness and mental fatigue effects[M]//Cognitive fatigue: multidisciplinary perspectives on current research and future applications. Washington, DC: American Psychological Association, 2011: 47-66. [11] WINGELAAR-JAGRT Y Q, WINGELAAR T T, RIEDEL W J, et al. Fatigue in aviation: safety risks, preventive strategies and pharmacological interventions[J]. Frontiers in Physiology, 2021, 12: 712628. [12] 刘俊杰, 张晴, 于佳楠. 近30年全球商业运输航空主力机型事故对比分析[J]. 安全, 2022, 43(10): 21-28. LIU J J, ZHANG Q, YU J N. Comparative statistics and analysis of accidents of two main types of commercial transport aviation in recent 30 years[J]. Safety&Security, 2022, 43(10): 21-28. [13] KANDERA B, ?KULTéTY F, MESáRO?OVá K. Consequences of flight crew fatigue on the safety of civil aviation[J]. Transportation Research Procedia, 2019, 43: 278-289. [14] VERDIèRE K J, ROY R N, DEHAIS F. Detecting pilot’s engagement using fNIRS connectivity features in an automated vs. manual landing scenario[J]. Frontiers in Human Neuroscience, 2018, 12: 6. [15] HAMANN A, CARSTENGERDES N. Assessing the development of mental fatigue during simulated flights with concurrent EEG-fNIRS measurement[J]. Scientific Reports, 2023, 13(1): 4738. [16] DRAICCHIO F, CHINI G, SILVETTI A, et al. Neck and shoulder muscle fatigue in high performance aircrafts pilots: a case study[C]//Proceedings of the International Conference on Applied Human Factors and Ergonomics, 2019: 40-49. [17] HANAKOVA L, SOCHA V, SOCHA L, et al. The influence of fatigue on psychophysiological indicators during 24 hours testing of pilots[C]//Proceedings of the 2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics, 2019: 181-186. [18] NAEERI S, MANDAL S, KANG Z. Analyzing pilots’ fatigue for prolonged flight missions: multimodal analysis approach using vigilance test and eye tracking[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2019: 111-115. [19] LEE S, KIM J K. Factors contributing to the risk of airline pilot fatigue[J]. Journal of Air Transport Management, 2018, 67: 197-207. [20] BOURGEOIS-BOUGRINE S, CARBON P, GOUNELLE C, et al. Perceived fatigue for short- and long-haul flights: a survey of 739 airline pilots[J]. Aviation Space and Environmental Medicine, 2003, 74(10): 1072-1077. [21] BABA M D, DARUIS D D I, NUHMANDEEN B. A survey on sleeping patterns and fatigue among pilots in south east asia[J]. Applied Mechanics and Materials, 2011, 58/60: 715-721. [22] 裘旭益, 仇峰, 吴奇. 面向飞行员疲劳状态监测的脑认知深度模型研究[J]. 航空电子技术, 2020, 51(4): 13-19. QIU X Y, QIU F, WU Q. Brain cognitive deep model for pilot fatigue state monitoring[J]. Avionics Technology, 2020, 51(4): 13-19. [23] 储银雪, 陆智俊, 裘旭益, 等. 深度稀疏自编码网络识别飞行员疲劳状态[J]. 控制理论与应用, 2019, 36(6): 850-857. CHU Y X, LU Z J, QIU X Y, et al. Using deep sparse auto-encoding network to identify pilots’ fatigue status[J]. Control Theory & Applications, 2019, 36(6): 850-857. [24] WU E Q, PENGX Y, ZHANG C Z, et al. Pilots’ fatigue status recognition using deep contractive autoencoder network[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10): 3907-3919. [25] PAN T, WANG H, SI H, et al. Identification of pilots’ fatigue status based on electrocardiogram signals[J]. Sensors, 2021, 21(9): 3003. [26] XU B, WU Q, Ⅺ C, et al. Recognition of the fatigue status of pilots using BF-PSO optimized multi-class GP classification with sEMG signals[J]. Reliability Engineering & System Safety, 2020, 199: 106930. [27] HAN S Y, KWAK N S, Oh T, et al. Classification of pilots’ mental states using a multimodal deep learning network[J]. Biocybernetics and Biomedical Engineering, 2020, 40(1): 324-336. [28] LI Y, LI K, WANG S, et al. Pilot behavior recognition based on multi-modality fusion technology using physiological characteristics[J]. Biosensors, 2022, 12(6): 404. [29] POWELL D M C, SPENCER M B, PETRIE K J. Comparison of in-flight measures with predictions of a bio-mathematical fatigue model[J]. Aviation, Space, and Environmental Medicine, 2014, 85(12): 1177-1184. [30] 刘亚威. 管制疲劳的眼动指标研究[D]. 天津: 中国民航大学, 2018. LIU Y W. The research of eye movement index for detecting air traffic controllers’ fatigue[D]. Tianjin: Civil Aviation University of China, 2018. [31] MONK T H. Practical consequences of fatigue-related performance failures[J]. Sleep, 2007, 30(11): 1402. [32] 汪磊, 孙瑞山. 基于面部特征识别的管制员疲劳监测方法研究[J]. 中国安全科学学报, 2012, 22(7): 66-71. WANG L, SUN R S. Study on face feature recognition-based fatigue monitoring method for air traffic controller[J]. China Safety Science Journal, 2012, 22(7): 66-71. [33] ZHANG J, CHEN Z, LIU W, et al. A field study of work type influence on air traffic controllers’ fatigue based on data-driven PERCLOS detection[J]. International Journal of Environmental Research and Public Health, 2021, 18(22): 11937. [34] 靳慧斌, 朱国蕾. 眼动指标检测管制疲劳的有效性[J]. 科学技术与工程, 2018, 18(19): 136-140. JIN H B, ZHU G L. Effectiveness of eye movement indicators on air traffic controllers’ fatigue detection[J]. Science Technology and Engineering, 2018, 18(19): 136-140. [35] 卜建, 刘银鑫, 王艳军. 空中交通管制员的眼动行为与疲劳关系[J]. 航空学报, 2017, 38(1): 57-62. BU J, LIU Y X, WANG Y J. Relationship between air traffic controllers’ eye movement and fatigue[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38(1): 57-62. [36] LI Q, NG K K H, YIU C Y, et al. Recognising situation awareness associated with different workloads using EEG and eye-tracking features in air traffic control tasks[J]. Knowledge-Based Systems, 2022, 260: 110179. [37] DASARI D, SHOU G, DING L. ICA-derived EEG correlates to mental fatigue, effort, and workload in a realistically simulated air traffic control task[J]. Frontiers in Neuroscience, 2017, 11: 297. [38] CHEN M L, LU S Y, MAO I F. Subjective symptoms and physiological measures of fatigue in air traffic controllers[J]. International Journal of Industrial Ergonomics, 2019, 70: 1-8. [39] 孙瑞山, 马广福, 袁乐平. 语音反应时特性的管制员疲劳风险分析[J]. 中国安全科学学报, 2016, 26(12): 7-12. SUN R S, MA G F, YUAN L P. Analysis of risk of controller fatigue based on characteristics of speech reaction time[J]. China Safety Science Journal, 2016, 26(12): 7-12. [40] WU N, SUN J. Fatigue detection of air traffic controllers based on radiotelephony communications and self-adaption quantum genetic algorithm optimization ensemble learning[J]. Applied Sciences, 2022, 12(20): 10252. [41] KOUBA P, ?MOTEK M, TICHY T, et al. Detection of air traffic controllers’ fatigue using voice analysis-an EEG validation study[J]. International Journal of Industrial Ergonomics, 2023, 95: 103442. [42] LI W C, ZHANG J, KEARNEY P. Psychophysiological coherence training to moderate air traffic controllers’ fatigue on rotating roster[J]. Risk Analysis, 2023, 43(2): 391-404. [43] CHANG Y H, YANG H H, HSU W J. Effects of work shifts on fatigue levels of air traffic controllers[J]. Journal of Air Transport Management, 2019, 76: 1-9. [44] 孙瑞山, 马广福, 袁乐平. MFI-16管制员疲劳量表的编制及信度效度分析[J]. 职业与健康, 2016, 32(22): 3053-3056. SUN R S, MA G F, YUAN L P. Revision on multidimensional fatigue inventory for controllers and analysis on reliability and validity analysis[J]. Occupation and Health, 2016, 32(22): 3053-3056. [45] 孙瑞山, 陈毅, 孙立斌. 基于CFF的管制员疲劳评估方法[J]. 中国安全科学学报, 2022, 32(4): 192-197. SUN R S, CHEN Y, SUN L B. Fatigue assessment method of controllers based on CFF[J]. China Safety Science Journal, 2022, 32(4): 192-197. [46] 孙瑞山, 李康, 李敬强. 空中交通管制员疲劳状态及影响因素分析[J]. 安全与环境学报, 2018, 18(6): 2241-2246. SUN R S, LI K, LI J Q. Analysis of the actual situation and influential factors of the fatigue among the air traffic controllers[J]. Journal of Safety and Environment, 2018, 18(6): 2241-2246. [47] 李兆悦. 面向管制员语音疲劳判别任务的语音特征提取研究[J]. 航空计算技术, 2020, 50(5): 56-60. LI Z Y. Acoustic feature extraction for speech fatigue recognition of ATC[J]. Aeronautical Computing Technique, 2020, 50(5): 56-60. [48] YANG J, YANG H, WU Z, et al. Cognitive load assessment of air traffic controller based on SCNN-TransE network using speech data[J]. Aerospace, 2023, 10(7): 584. [49] 陈超. 基于深度学习的管制员语音疲劳检测研究[D]. 广汉: 中国民用航空飞行学院, 2023. CHEN C. Research on controller speech fatigue detection based on deep learning[D]. Guanghan: Civil Aviation Flight University of China, 2023. [50] 梁海军, 刘长炎, 陈宽明, 等. 基于DCNN的管制员疲劳状态检测[J]. 科学技术与工程, 2021, 21(35): 15277-15283. LIIANG H J, LIU C Y, CHEN K M, et al. Controller fatigue state detection based on DCNN[J]. Science Technology and Engineering, 2021, 21(35): 15277-15283. [51] 王超, 徐楚昕, 王志锋. 面向空中交通管制员疲劳识别的哈欠检测[J]. 安全与环境学报, 2023, 23(6): 1970-1977. WANG C, XU C X, WANG Z F. Research on yawn detection method for fatigue recognition of air traffic controllers[J]. Journal of Safety and Environment, 2023, 23(6): 1970-1977. [52] BENDAK S, RASHID H S J. Fatigue in aviation: a systematic review of the literature[J]. International Journal of Industrial Ergonomics, 2020, 76: 102928. [53] AVERSK, JOHNSON W B. A review of federal aviation administration fatigue research[J]. Aviation Psychology and Applied Human Factors, 2011, 1(2): 87-98. [54] 胡臻. 机务维修人员疲劳风险指数研究[D]. 天津: 中国民航大学, 2016. HU Z. Research on fatigue risk index of maintenance personnel[D]. Tianjin: Civil Aviation University of China, 2016. [55] MILLER M, MRUSEK B, HERBIC J. Managing fatigue in aviation maintenance while promoting a human factors safety reporting system; a strategic approach to aviation safety[C]//Proceedings of the Safety Management and Human Factors, 2023: 54-63. [56] SANTOS L F F M, MELICIO R. Stress, pressure and fatigue on aircraft maintenance personal[J]. International Review of Aerospace Engineering, 2019, 12(1): 35. [57] 程林. 眼动技术在机务维修中的应用分析[J]. 信息系统工程, 2018(12): 158. CHENG L. Application analysis of eye movement technology in locomotive maintenance[J]. China CIO News, 2018(12): 158. [58] 贺强, 谭德强, 程林. 民机复合材料目视检查中的眼动与疲劳检测[J]. 航空学报, 2020, 41(5): 211-219. HE Q, TAN D Q, CHENG L. Eye movement and fatigue detection in visual inspection of civil aircraft composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 211-219. [59] 刘洋, 曹新生, 文治洪, 等. 长时间颈部后仰相关局部肌肉表面肌电特征分析[J]. 北京生物医学工程, 2023, 42(6): 581-588. LIU Y, CAO X S, WEN Z H, et al. Analysis of surface electromyographic characteristics of local muscles related to long-term neck tilt back[J]. Beijing Biomedical Engineering, 2023, 42(6): 581-588. [60] HOBBS A, AVERS B K, HILES J J, et al. Fatigue risk management in aviation maintenance: current best practices and potential future countermeasures[EB/OL]. (2011-06-01)[2023-03-09]. https://rosap.ntl.bts.gov/view/dot/20808. [61] ASAD H, YU D, MOTT J H. Risk factors for musculoskeletal injuries in airline maintenance, repair & overhaul[J]. International Journal of Industrial Ergonomics, 2019, 70: 107-115. [62] RODRIGURZ F H A, MAYORGA O V A. Characterization of low back pain in pilots and maintenance technicians on a commercial airline[J]. Aerospace Medicine and Human Performance, 2016, 87(9): 795-799. [63] YAZGAN E, OZKAN N F, ULUTAS B H. A questionnaire-based musculoskeletal disorder assessment for aircraft maintenance technicians[J]. Aircraft Engineering and Aerospace Technology, 2021, 94(2): 240-247. [64] 张晓全, 潘晶, 王欢, 等. 机务人员疲劳致因影响分析[J]. 中国安全科学学报, 2013, 23(2): 97-102. ZHANG X Q, PAN J, WANG H, et al. Analysis of fatigue causes for aircraft maintenance personnel[J]. China Safety Science Journal, 2013, 23(2): 97-102. [65] 孙瑞山, 胡臻, 汪磊, 等. 基于权的最小平方法和熵权法的机务维修人员疲劳影响因素研究[J]. 安全与环境工程, 2016, 23(3): 167-170. SUN R S, HU Z, WANG L, et al. Influencing factors of maintenance personnel fatigue based on WLSM and entropy weight method[J]. Safety snd Environment Engineering, 2016, 23(3): 167-170. [66] 汪磊, 任勇. 机务维修人员疲劳风险评价模型及管理系统实现[J]. 中国安全科学学报, 2017, 27(5): 70-75. WANG L, REN Y. Fatigue risk evaluation model and system for civil aviation maintenance personnel[J]. China Safety Science Journal, 2017, 27(5): 70-75. [67] SIGNAL T L, BERG V D M J, MULRINE H M. Personal and work factors that predict fatigue-related errors in aircraft maintenance engineering[J]. Aerospace Medicine and Human Performance, 2019, 90(10): 860-866. [68] ZIMMERMANN N, WANG P, PULLEN K. Fatigue in aircraft maintenance technician schools[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2022, 9(4): 1756. |
[1] | ZHANG Kaibing, ZHU Danni, WANG Zhen, YAN Yadi. Survey of Super-Resolution Images Quality Assessment [J]. Computer Engineering and Applications, 2019, 55(4): 31-40. |
[2] | ZHENG Hangjia, ZHONG Baojiang. Overview and Evaluation of Image Straight Line Segment Detection Algorithms [J]. Computer Engineering and Applications, 2019, 55(17): 9-19. |
[3] | LI Shaowen1, WANG Jiangbo2. Research on driver fatigue detection system [J]. Computer Engineering and Applications, 2013, 49(15): 253-258. |
[4] | LV Jing-jing,XIA Li-min. Fatigue recognition based on adaptive locality preserving projections [J]. Computer Engineering and Applications, 2010, 46(22): 187-189. |
[5] | TAN Tai-zhi,LI Ding-lun,LIU Fu-chun. Method of eye location and states analysis [J]. Computer Engineering and Applications, 2010, 46(20): 181-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||