[1] QIAN Y N, SUN Q N, FEI G Q. Riding behavior and electric bike traffic crashes: a Chinese case-control study[J]. Traffic Injury Prevention, 2020, 21(2): 24-28.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[3] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2980-2988.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision(ECCV), 2016: 21-37.
[6] LIN TY, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision, 2014: 740-755.
[7] EVERINGHAM M, ESLAMI S, VAN G, et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136.
[8] WANG X, XIAO T, JIANG Y, et al. Repulsion loss: detecting pedestrians in a crowd[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7774-7783.
[9] ZHANG S F, WEN L Y, BIAN X, et al. Occlusion-aware R-CNN: detecting pedestrians in a crowd[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 657-674.
[10] 叶佳林, 苏子毅, 马浩炎, 等. 改进YOLOv3的非机动车检测与识别方法[J].计算机工程与应用, 2021, 57(1):194-199.
YE J L, SU Z Y, MA H Y, et al. Improved YOLOv3 non-motor vehicles detection and recognition method[J]. Computer Engineering and Applications, 2021, 57(1): 194-199.
[11] 邵奇可, 李路, 周宇, 等. 一种基于滑动窗口优化算法的行人检测算法[J]. 浙江工业大学学报, 2015, 43(2): 212-216.
SHAO Q K, LI L, ZHOU Y, et al. Pedestrian detection in videos based on optimization algorithm using sliding window[J]. Journal of Zhejiang University of Technology, 2015, 43(2): 212-216.
[12] HAMID R, NATHAN T,GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 658-666.
[13] 周辉, 王维莉. 基于无人机视频的非机动车道交通冲突分析[J]. 计算机工程与应用, 2023, 59(16): 324-329.
ZHOU H, WANG W L. Traffic conflict analysis of non-motor vehicle lanes based on UAV video[J]. Computer Engineering and Applications, 2023, 59(16): 324-329.
[14] HOWARD A , ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[15] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[16] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586.
[17] REIS D, KUPEC J, HONG J, et al.Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[18] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[19] YANI I, DUNCAN R, ROBERTO C, et al. Deep roots: improving CNN efficiency with hierarchical filter groups[J]. arXiv:1605.06489v3, 2016.
[20] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[21] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13728-13737.
[22] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000. |