[1] KLEIN J T. Computer response to user frustration[D]. Cambridge: Massachusetts Institute of Technology, 1998.
[2] LIU K, PICARD R W. Embedded empathy in continuous, interactive health assessment[C]//Proceedings of the CHI Workshop on HCI Challenges in Health Assessment, 2005.
[3] BRAVE S, NASS C, HUTCHINSON K. Computers that care: investigating the effects of orientation of emotion exhibited by an embodied computer agent[J]. International Journal of Human-Computer Studies, 2005, 62(2): 161-178.
[4] FITZPATRICK K K, DARCY A, VIERHILE M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial[J]. JMIR Mental Health, 2017, 4(2): e7785.
[5] LIU S, ZHENG C, DEMASI O, et al. Towards emotional support dialog systems[J]. arXiv:2106.01144, 2021.
[6] 陈晨, 朱晴晴, 严睿, 等. 基于深度学习的开放领域对话系统研究综述[J]. 计算机学报, 2019, 42(7): 1439-1466.
CHEN C, ZHU Q Q, YAN R, et al. Surver on deep learning based open domain dialogue system[J]. Chinese Journal of Computers, 2019, 42(7): 1439-1466.
[7] 唐宏, 彭金枝, 郭艳霞, 等. 融合主题预测和情感推理的共情回复生成方法[J]. 计算机工程与应用, 2023, 59(14): 114-123.
TANG H, PENG J Z, GUO Y X, et al. Empathetic response generation by integrating topic prediction and emotion reasoning[J]. Computer Engineering and Applications, 2023, 59(14): 114-123.
[8] LIN Z, MADOTTO A, SHIN J, et al. MoEL: mixture of empathetic listeners[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 121-132.
[9] MAJUMDER N, HONG P, PENG S, et al. MIME: MIMicking emotions for empathetic response generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 8968-8979.
[10] GAO J, LIU Y, DENG H, et al. Improving empathetic response generation by recognizing emotion cause in conversations[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021, 2021: 807-819.
[11] LI Q, CHEN H, REN Z, et al. Multi-resolution interactive empathetic dialogue generation[J]. arXiv:1911.08698, 2019.
[12] LI Q, LI P, CHEN Z, et al. Towards empathetic dialogue generation over multi-type knowledge[J]. arXiv:2009.09708, 2020.
[13] ZHOU X, WANG W Y. MOJITALK: generating emotional responses at scale[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018: 1128-1137.
[14] ZHOU H, HUANG M, ZHANG T, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[15] HUANG C, ZAIANE O R, TRABELSI A, et al. Automatic dialogue generation with expressed emotions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018: 49-54.
[16] COLOMBO P, WITON W, MODI A, et al. Affect-driven dialog generation[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(Volume 1: Long and Short Papers), 2019: 3734-3743.
[17] SONG Z, ZHENG X, LIU L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 3685-3695.
[18] SHEN L, FENG Y. CDL: curriculum dual learning for emotion-controllable response generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 556-566.
[19] RASHKIN H, SMITH E M, LI M, et al. Towards empathetic open-domain conversation models: a new benchmark and dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019:5370-5381.
[20] ZHAO T, ZHAO R, ESKENAZI M. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017: 654-664.
[21] ZHAO T, LEE K, ESKENAZI M. Unsupervised discrete sentence representation learning for interpretable neural dialog generation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018: 1098-1107.
[22] SHIN J, XU P, MADOTTO A, et al. Generating empathetic responses by looking ahead the user’s sentiment[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: 7989-7993.
[23] LI Q, CHEN H, REN Z, et al. EmpDG: multi-resolution interactive empathetic dialogue generation[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 4454-4466.
[24] WELIVITA A, PU P. A taxonomy of empathetic response intents in human social conversations[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 4886-4899.
[25] WANG J, LI W, LIN P, et al. Empathetic response generation through graph-based multi-hop reasoning on emotional causality[J]. Knowledge-Based Systems, 2021, 233: 107547.
[26] WANG Y H, HSU J H, WU C H, et al. Transformer-based empathetic response generation using dialogue situation and advanced-level definition of empathy[C]//Proceedings of the 2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP), 2021: 1-5.
[27] LI Q, LI P, REN Z, et al. Knowledge bridging for empathetic dialogue generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 10993-11001.
[28] ZHU L Y, ZHANG Z, WANG J, et al. Multi-party empathetic dialogue generation: a new task for dialog systems[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022: 298-307.
[29] YAN X, YANG J, SOHN K, et al. Attribute2Image: conditional image generation from visual attributes[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016: 776-791.
[30] GU X, CHO K, HA J W, et al. DialogWAE: multimodal response generation with conditional Wasserstein auto-encoder[C]//Proceedings of the 7th International Conference on Learning Representations, 2019.
[31] BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[J]. arXiv:1511.06349, 2015.
[32] ZANDIE R, MAHOOR M H. Emptransfo: a multi-head transformer architecture for creating empathetic dialog systems[J]. arXiv:2003.02958, 2020.
[33] LIU Y, GAO J, DU J, et al. Empathetic response generation with state management[J]. arXiv:2205.03676, 2022.
[34]P APINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002: 311-318.
[35] BAHL L R, JELINEK F, MERCER R L. A maximum likelihood approach to continuous speech recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983(2): 179-190.
[36] LI J, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[C]//Proceedings of the NAACL-HLT, 2016.
[37] ZHANG T, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT[C]//Proceedings of the International Conference on Learning Representations, 2019.
[38] ZUEHLKE D, GEWENIGER T, HEIMANN U, et al. Fuzzy Fleiss-Kappa for comparison of fuzzy classifiers[C]//Proceedings of the European Symposium on Artificial Neural Networks, 2009. |