[1] 齐斌凯. 无人机编队控制技术研究[D]. 长春: 长春理工大学, 2023.
QI B K. Research on UAV formation control technology[D]. Changchun: Changchun University of Science and Technology, 2023.
[2] 周方宇. 拒止环境下的无人机集群协同围捕算法研究[D]. 西安: 西安工业大学, 2023.
ZHOU F Y. Research on cooperative roundup algorithm of unmanned aerial vehicle swarms in denied environment[D]. Xi’an: Xi’an Technological University, 2023.
[3] 张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战[J]. 自动化学报, 2020, 46(5): 847-857.
ZHANG W D, LIU X C, HAN P. Progress and challenges of overwater unmanned systems[J]. Acta Automatica Sinica, 2020, 46(5): 847-857.
[4] XU Y, HAN Y, SUN Z, et al. Path planning optimization with multiple pesticide and power loading bases using several unmanned aerial systems on segmented agricultural fields[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(3): 1882-1894.
[5] 雷星, 胡笑旋, 王国强, 等. 基于Stackelberg安全博弈的多无人机边境巡逻问题研究[J]. 系统工程理论与实践, 2023, 43(3): 889-909.
LEI X, HU X X, WANG G Q, et al. Border patrol using multiple unmanned aerial vehicles based on Stackelberg security game[J]. Systems Engineering-Theory & Practice, 2023, 43(3): 889-909.
[6] 项芮, 朱默宁, 徐丽. 多无人机高速公路巡逻任务规划方法[J]. 无线电工程, 2022, 52(7): 1222-1230.
XIANG R, ZHU M N, XU L. Task planning method for multi-UAV expressway patrol[J]. Radio Engineering, 2022, 52(7): 1222-1230.
[7] WANG Y, YUE Y, SHAN M, et al. Formation reconstruction and trajectory replanning for multi-UAV patrol[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 719-729.
[8] 肖关华, 张伟, 卓武, 等. 无人机航测技术在复杂地表区地震勘探中的应用[J]. 物探装备, 2022, 32(2): 106-111.
XIAO G H, ZHANG W, ZHUO W, et al. Application of UAV aerial survey technology in seismic exploration in complex area[J]. Equipment for Geophysical Prospecting, 2022, 32(2): 106-111.
[9] VAIGANDLA K K, THATIPAMULA S, KARNE R K. Investigation on unmanned aerial vehicle (UAV): an overview[J]. IRO Journal on Sustainable Wireless Systems, 2022, 4(3): 130-148.
[10] ANDRIOLO U, GON?ALVES G, RANGEL-BUITRAGO N, et al. Drones for litter mapping: an inter-operator concordance test in marking beached items on aerial images[J]. Marine Pollution Bulletin, 2021, 169: 112542.
[11] ALAMRY F, HASSAN Y. Using single and multiple unmanned aerial vehicles for microscopic driver behaviour data collection at freeway interchange ramps[J]. Canadian Journal of Civil Engineering, 2022, 49(2): 212-221.
[12] 顾凌枫, 何明, 陈国友, 等. 无人机集群系统弹性研究[J]. 系统工程与电子技术, 2020, 43(1): 156-162.
GU L F, HE M, CHEN G Y, et al. Research on unmanned aerial vehicle swarm system resilience[J]. Systems Engineering and Electronics, 2020, 43(1): 156-162.
[13] REED D A, KAPUR K C, CHRISTIE R D. Methodology for assessing the resilience of networked infrastructure[J]. IEEE Systems Journal, 2009, 3(2): 174-180.
[14] FRANCIS R, BEKERA B. A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121: 90-103.
[15] 袁国栋, 何明, 韩伟, 等. 无人机集群社团网络弹性重构研究[J]. 现代防御技术, 2023, 51(5): 50-58.
YUAN G D, HE M, HAN W, et al. Research on resilience reconstruction of community network of unmanned aerial vehicle swarm[J]. Modern Defense Technology, 2023, 51(5): 50-58.
[16] FENG Q, HAI X S, SUN B, et al. Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization[J]. Chinese Journal of Aeronautics, 2022, 35(1): 110-123.
[17] NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering & System Safety, 2017, 157: 35-53.
[18] YOO M, KIM T, YOON J T, et al. A resilience measure formulation that considers sensor faults[J]. Reliability Engineering & System Safety, 2020, 199: 106393.
[19] TRAN H T. A complex networks approach to designing resilient system-of-systems[D]. Atlanta: Georgia Institute of Technology, 2016.
[20] BAI G, LI Y, FANG Y, et al. Network approach for resi-
lience evaluation of a UAV swarm by considering communication limits[J]. Reliability Engineering & System Safety, 2020, 193: 106602.
[21] SUN Q, LI H, ZHANG Y, et al. A baseline assessment method of UAV swarm resilience based on complex networks[C]//Proceedings of the 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI), 2021: 83-86.
[22] LI H, SUN Q, WANG M, et al. A baseline-resilience assessment method for UAV swarms under heterogeneous communication networks[J]. IEEE Systems Journal, 2022, 16(4): 6107-6118.
[23] LI B, SONG C, BAI S, et al. Multi-UAV trajectory planning during cooperative tracking based on a fusion algorithm integrating MPC and standoff[J]. Drones, 2023, 7(3): 196.
[24] 张江伟. 基于粒子群算法和控制参数化的多无人机编队重构控制方法[J]. 计算机应用与软件, 2023, 40(3): 142-148.
ZHANG J W. Formation reconfiguration control method of multi-UAV based on particle swarm optimization and control parameterization[J]. Computer Applications and Software, 2023, 40(3): 142-148.
[25] DUAN H, LUO Q, SHI Y, et al. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration[J]. IEEE Computational Intelligence Magazine, 2013, 8(3): 16-27.
[26] YANG Z, YANG F, MAO T, et al. Reconfiguration for UAV formation: a novel method based on modified artificial bee colony algorithm[J]. Drones, 2023, 7(10): 595.
[27] 杨庆, 段海滨. 仿鸿雁编队的无人机集群飞行验证[J]. 工程科学学报, 2019, 41(12): 1599-1608.
YANG Q, DUAN H B. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599-1608.
[28] LI K, HAN Y, YAN X. Distributed multi-UAV cooperation for dynamic target tracking optimized by an SAQPSO algorithm[J]. ISA Transactions, 2022, 129: 230-242.
[29] DONG D, WANG K. Research on dynamic reconstruction of unmanned aerial vehicle network[C]//Proceedings of the 2nd International Conference on Artificial Intelligence and Computer Information Technology (AICIT), Yichang, Sept 15-17, 2023: 1-4.
[30] LIU G, LI B, JI Y. A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration[J]. ISA Transactions, 2022, 129: 217-229.
[31] GAO C, MA J, LI T, et al. Hybrid swarm intelligent algorithm for multi-UAV formation reconfiguration[J]. Complex & Intelligent Systems, 2023, 9(2): 1929-1962.
[32] YAN Y, XIA X, ZHANG L, et al. A clustering scheme based on the binary whale optimization algorithm in FANET[J]. Entropy, 2022, 24(10): 1366.
[33] ZHANG H, ZHANG G, YANG R, et al. Resilient formation reconfiguration for leader-follower multi-UAVs[J]. Applied Sciences, 2023, 13(13): 7385.
[34] LIU T, BAI G, TAO J, et al. A multistate network approach for resilience analysis of UAV swarm considering information exchange capacity[J]. Reliability Engineering & System Safety, 2024, 241: 109606.
[35] LIANG Y, QI D, YANJIE Z. Adaptive leader-follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2972-2988.
[36] DONG Q, LIU Z. Formation control for unmanned aerial vehicle swarm with disturbances: a mission‐driven control scheme[J]. Optimal Control Applications and Methods, 2023, 44(3): 1441-1462.
[37] TAHIR A, HAGHBAYAN H, B?LING J M, et al. Energy-efficient post-failure reconfiguration of swarms of unmanned aerial vehicles[J]. IEEE Access, 2022, 11: 24768-24779.
[38] ARAKI Y, UCHIYAMA K, MASUDA K. Fault detection and formation flying reconfiguration of UAVs[C]//Proceedings of the 2021 Australian & New Zealand Control Conference (ANZCC), 2021: 211-215.
[39] LIU D, DU Z, LIU X, et al. Task-based network reconfiguration in distributed UAV swarms: a bilateral matching approach[J]. IEEE/ACM Transactions on Networking, 2022, 30(6): 2688-2700.
[40] 张岱峰, 段海滨, 范彦铭. 仿狼群狩猎空间交互机制的无人机集群合围控制[J]. 中国科学: 技术科学, 2022, 52(10): 1555-1570.
ZHANG D F, DUAN H B, FAN Y M. UAV swarm containment control inspired by spatial interaction mechanism of wolf-pack foraging[J]. Scientia Sinica Technologica, 2022, 52(10): 1555-1570.
[41] FENG Q, LIU M, SUN B, et al. Resilience measure and formation reconfiguration optimization for multi-UAV systems[J]. IEEE Internet of Things Journal, 2023, 11(6): 10616-10626.
[42] LIU M, FENG Q, FAN D, et al. Resilience importance measure and optimization considering the stepwise recovery of system performance[J]. IEEE Transactions on Reliability, 2023, 72(3): 1064-1077.
[43] LISSAMAN P B S, SHOLLENBERGER C A. Formation flight of birds[J]. Science, 1970, 168: 1003-1005.
[44] HAMILTON W J. Social aspects of bird orientation mechanisms[M]//Animal orientation and navigation. Corvallis: Oregon State University Press, 1967: 57-71. |