[1] BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000: 417-424.
[2] LIU Y, SHU C. A comparison of image inpainting techniques[C]//Sixth International Conference on Graphic and Image Processing, 2015: 347-357.
[3] CLERCQ R D. The metaphysics of art restoration[J]. British Journal of Aesthetics, 2013, 53(3): 261-275.
[4] ZHANG Z. Research on the taxi traffic accident and violation identification model[C]//2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, 2010: 533-536.
[5] WANG C, DONG E, YANG S. Occlusion face image inpainting method based on multi-scale and contextual attention[C]//2021 China Automation Congress, 2021: 2857-2861.
[6] MARTY P F. Museum websites and museum visitors: digital museum resources and their use[J]. Museum Management and Curatorship, 2008, 23(1): 81-99.
[7] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2536-2544.
[8] JIANG Y, XU J, YANG B, et al. Image inpainting based on generative adversarial networks[J]. IEEE Access, 2020, 8: 22884-22892.
[9] SAGONG M, SHIN Y, KIM S, et al. Pepsi: fast image inpainting with parallel decoding network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11360-11368.
[10] 路志英, 周庆霞, 李鑫. 基于改进Criminisi算法的地基云图修复方法[J]. 数据采集与处理, 2019, 34(1): 12-21.
LU Z Y, ZHOU Q X, LI X. Ground-based cloud image inpainting method based on improved Criminisi algorithm[J]. Journal of Data Acquisition and Processing, 2019, 34(1): 12-21.
[11] ENGAN K, AASE S O, HUSOY J H. Method of optimal directions for frame design[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999: 2443-2446.
[12] WANG Y, TAO X, QI X, et al. Image inpainting via generative multi-column convolutional neural networks[C]//Proceedings of the 2018 Conference and Workshop on Neural Information Processing Systems, 2018: 329-338.
[13] ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1486-1494.
[14] ZHENG C, CHAMT J, CAI J. Pluralistic image completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1438-1447.
[15] YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5505-5514.
[16] 罗三定, 涂宙霖, 田光亚. 基于频率谱处理的瓷砖纹理分类方法[J]. 计算机工程与应用, 2017, 53(4): 184-188.
LUO S D, TU Z L, TIAN G Y. Ceramic tiles texture classification method based on frequency spectrum processing[J]. Computer Engineering and Applications, 2017, 53(4): 184-188.
[17] 王晋宇, 杨海涛, 李高源, 等. 生成对抗网络及其图像处理应用研究进展[J]. 计算机工程与应用, 2021, 57(8): 26-35.
WANG J Y, YANG H T, LI G Y, et a al. Research progess of generative adversarial network and its application in image processing[J]. Computer Engineering and Applications, 2021, 57(8): 26-35.
[18] 董张慧雅, 张凡, 王莉. 基于联合注意力生成对抗网络的自动文摘模型[J]. 计算机工程与设计, 2021, 42(6): 1756-1762.
DONG Z H Y, ZHANG F, WANG L. Automatic summarization model based on joint attention generative adversarial network[J]. Computer Engineering and Design, 2021, 42(6): 1756-1762.
[19] JIANG L, DAI B, WU W, et al. Focal frequency loss for image reconstruction and synthesis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13919-13929.
[20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[21] XU Z Q J, ZHAGN Y, LUO T, et al. Frequency principle: Fourier analysis sheds light on deep neural networks[J]. arXiv:1901.06523, 2019.
[22] XU Z Q J, ZHANG Y, LUO T. Overview frequency principle/spectral bias in deep learning[J]. arXiv:2201.07395, 2022.
[23] CHU J, GUO Z, LENG L. Object detection based on multi-layer convolution feature fusion and online hard example mining[J]. IEEE Access, 2018, 6: 19959-19967.
[24] MUKHOTI J, KULHARIA V, SANYAL A, et al. Calibrating deep neural networks using focal loss[C]//Advances in Neural Information Processing Systems, 2020: 15288-15299.
[25] CHUA L O. CNN: a vision of complexity[J]. International Journal of Bifurcation and Chaos, 1997, 7(10): 2219-2425.
[26] YU J, LIU Z, YANG J, et al. Free-form image inpainting with gated convolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 4471-4480.
[27] PECHA M, HORAK D. Analyzing l1-loss and l2-loss support vector machines implemented in PERMON toolbox[C]//International Conference on Advanced Engineering Theory and Applications. Cham: Springer, 2018: 13-23.
[28] 李健, 孙大松, 张备伟. 结合双编码器与对抗训练的图像修复[J]. 计算机工程与应用, 2021, 57(7): 192-197.
LI J, SUN D S, ZHANG B W. Image restoration using dual-encoder and adversarial training[J]. Computer Engineering and Applications, 2021, 57(7): 192-197. |