Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (7): 15-30.DOI: 10.3778/j.issn.1002-8331.2205-0503
• Research Hotspots and Reviews • Previous Articles Next Articles
JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi
Online:
2023-04-01
Published:
2023-04-01
蒋玉英,陈心雨,李广明,王飞,葛宏义
JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing[J]. Computer Engineering and Applications, 2023, 59(7): 15-30.
蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0503
[1] BATTAGLIA P W,HAMRICK J B,BAPST V,et al.Relational inductive biases,deep learning,and graph networks[J].arXiv:1806.01261,2018. [2] SANCHEZ-GONZALEZ A,HEESS N,SPRINGENBERG J T,et al.Graph networks as learnable physics engines for inference and control[C]//Proceedings of International Conference on Machine Learning,2018:4470-4479. [3] HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graph[C]//Advances in Neural Information Processing Systems,2017:1025-1035. [4] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016. [5] SHANG J,XIAO C,MA T,et al.Gamenet:graph augmented memory networks for recommending medication combination[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:1126-1133. [6] PENG H,WANG H,DU B,et al.Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J].Information Sciences,2020,521:277-290. [7] 姜山,丁治明,徐馨润,等.面向路网交通流态势预测的图神经网络模型[J].计算机科学与探索,2021,15(6):1084-1091. JIANG S,DING Z M,XU X R,et al.Graph neural network for traffic flow situation prediction[J].Journal of Frontiers of Computer Science and Technology,2021,15(6):1084-1091. [8] 何倩倩,孙静宇,曾亚竹.基于邻域感知图神经网络的会话推荐[J].计算机工程与应用,2022,58(9):107-115. HE Q Q,SUN J Y,ZENG Y Z.Neighborhood awareness graph neural networks for session-based recommendation[J].Computer Engineering and Applications,2022,58(9):107-115. [9] 吴正洋,汤庸,刘海.个性化学习推荐研究综述[J].计算机科学与探索,2022,16(1):21-40. WU Z Y,TANG Y,LIU H.Survey of personalized learning recommendation[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):21-40. [10] QI X,LIAO R,JIA J,et al.3D graph neural networks for rgbd semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision,2017. [11] LANDRIEU L,SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4558-4567. [12] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [13] CAI H,ZHENG V W,CHANG K C.A comprehensive survey of graph embedding:problems,techniques,and applications[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616-1637. [14] CHITRADEVI B,SRIMATHI P.An overview on image processing techniques[J].International Journal of Innovative Research in Computer and Communication Engineering,2014,2(11):6466-6472. [15] ABDI H.A neural network primer[J].Journal of Biological Systems,1994,2(3):247-281. [16] SAZLI M H.A brief review of feed-forward neural networks[J].Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering,2006,50(1). [17] 杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用,2018,38(S2):1-6. YANG L,WU Y Q,WANG J L,et al.Research on research on recurrent neural networks[J].Journal of Computer Applications,2018,38(S2):1-6. [18] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [19] CHO K,VAN MERRI?NBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv:1406. 1078,2014. [20] HOPFIELD J J.Hopfield network[J].Scholarpedia,2007,2(5):1977. [21] HINTON G E,SEJNOWSKI T J.Learning and relearning in Boltzmann machines[J].Parallel Distributed Processing:Explorations in the Microstructure of Cognition,1986,282/317:2. [22] GORI M,MONFARDINI G,SCARSELLI F.A new model for learning in graph domains[C]//Proceedings.2005 IEEE International Joint Conference on Neural Networks,2005:729-734. [23] HUSH D R,HORNE B G.Progress in supervised neural networks[J].IEEE Signal Processing Magazine,1993,10(1):8-39. [24] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [25] 吴博,梁循,张树森,等.图神经网络前沿进展与应用[J].计算机学报,2022,45(1):35-68. WU B,LIANG X,ZHANG S S,et al.Advances and applications in graph neural network[J].Chinese Journal of Computers,2022,45(1):35-68. [26] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems,2016. [27] 师海忠.无向图语言[J].计算机科学,2011,38(6):259-261. SHI H Z.Undirected graph language[J].Computer Science,2011,38(6):259-261. [28] 尚亚灵,袁道华,丁莹,等.消息传递机制的比较及其最新发展[J].计算机工程与设计,2007(10):2265-2269. SHANG Y L,YUAN D H,DING Y,et al.Comparison and latest development of message-passing mechanisms[J].Computer Engineering and Design,2007(10):2265-2269. [29] 马帅,刘建伟,左信.图神经网络综述[J].计算机研究与发展,2022,59(1):47-80. MA S,LIU J W,ZUO X.Survey on graph neural network[J].Journal of Computer Research and Development,2022,59(1):47-80. [30] GILMER J,SCHOENHOLZ S S,RILEY P F,et al.Neural message passing for quantum chemistry[C]//Proceedings of the International Conference on Machine Learning,2017:1263-1272. [31] ATWOOD J,TOWSLEY D.Diffusion-convolutional neural networks[C]//Advances in Neural Information Processing Systems,2016. [32] GAO H,WANG Z,JI S.Large-scale learnable graph convolutional networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:1416-1424. [33] GAMON J A,RAHMAN A,DUNGAN J,et al.Spectral network(SpecNet)—what is it and why do we need it?[J].Remote Sensing of Environment,2006,103(3):227-235. [34] CHEN J,MA T,XIAO C.FastGCN:fast learning with graph convolutional networks via importance sampling[J].arXiv:1801.10247,2018. [35] VELI?KOVI? P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [36] 李硕朋,齐思宇,林绍福,等.图神经网络及其在通信网络领域应用综述[J].北京工业大学学报,2021(8):971-981. LI S P,QI S Y,LIN S F,et al.Survey of graph neural network and its applications in communication networks[J].Journal of Beijing University of Technology,2021(8):971-981. [37] ZHANG J,SHI X,XIE J,et al.GAAN:Gated attention networks for learning on large and spatiotemporal graphs[J].arXiv:1803.07294,2018. [38] WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference,2019:2022-2032. [39] YANG S,LI G,YU Y.Dynamic graph attention for referring expression comprehension[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:4644-4653. [40] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [41] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [42] WANG H,BELL D.Extended k-nearest neighbours based on evidence theory[J].The Computer Journal,2004,47(6):662-672. [43] LI Y,TARLOW D,BROCKSCHMIDT M,et al.Gated graph sequence neural networks[J].arXiv:1511.05493,2015. [44] KELLEY J L.General topology[M].[S.l.]:Courier Dover Publications,2017. [45] KINGMA D P,WELLING M.Auto-encoding variational Bayes[J].arXiv:1312.6114,2013. [46] BEAL M J.Variational algorithms for approximate Bayesian inference[D].London:University of London,2003. [47] KIPF T N,WELLING M.Variational graph auto-encoders[J].arXiv:1611.07308,2016. [48] MA T,CHEN J,XIAO C.Constrained generation of semantically valid graphs via regularizing variational autoencoders[C]//Advances in Neural Information Processing Systems,2018. [49] ZHU D,CUI P,WANG D,et al.Deep variational network embedding in wasserstein space[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:2827-2836. [50] PAN S,HU R,LONG G,et al.Adversarially regularized graph autoencoder for graph embedding[J].arXiv:1802. 04407,2018. [51] 李方,吴国栋,涂立静,等.图自编码器推荐研究综述[J].计算机工程与科学,2022,44(2):335-344. LI F,WU G D,TU L J,et al.A review of graph auto-encoder recommendation[J].Computer Engineering and Science,2022,44(2):335-344. [52] LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[J].arXiv:1707.01926,2017. [53] JAIN A,ZAMIR A R,SAVARESE S,et al.Structural-RNN:deep learning on spatio-temporal graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:5308-5317. [54] YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017. [55] YAN S,XIONG Y,LIN D.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,2018. [56] 赵宏,翟冬梅,石朝辉.短时交通流预测模型综述[J].都市快轨交通,2019,32(4):50-54. ZHAO H,ZHAI D M,SHI C H.Review of short-term traffic flow forecasting models[J].Urban Rapid Rail Transit,2019,32(4):50-54. [57] DE CAO N,KIPF T.An implicit generative model for small molecular graphs[J].arXiv:1805.11973,2018. [58] BOJCHEVSKI A,SHCHUR O,ZüGNER D,et al.Netgan:generating graphs via random walks[C]//Proceedings of the International Conference on Machine Learning,2018:610-619. [59] MARINO K,SALAKHUTDINOV R,GUPTA A.The more you know:Using knowledge graphs for image classification[J].arXiv:1612.04844,2016. [60] WANG X,YE Y,GUPTA A.Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6857-6866. [61] WANG Z,CHEN T,REN J,et al.Deep reasoning with knowledge graph for social relationship understanding[J].arXiv:1807.00504,2018. [62] WANG X,ZHANG L,ROTH H,et al.Interactive 3D segmentation editing and refinement via gated graph neural networks[C]//Proceedings of the International Workshop on Graph Learning in Medical Imaging,2019:9-17. [63] LIANG X,SHEN X,FENG J,et al.Semantic object parsing with graph LSTM[C]//Proceedings of the European Conference on Computer Vision,2016:125-143. [64] LIANG X,LIN L,SHEN X,et al.Interpretable structure-evolving LSTM[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1010-1019. [65] LI L,GAN Z,CHENG Y,et al.Relation-aware graph attention network for visual question answering[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10313-10322. [66] MI L,CHEN Z.Hierarchical graph attention network for visual relationship detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:13886-13895. [67] XU B,DING S,ZHANG Y.Image classification model based on GAT[J].Journal of Physics(Conference Series),2020,1570(1):012082. [68] LIN D,LIN J,ZHAO L,et al.Multilabel aerial image classification with a concept attention graph neural network[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-12. [69] HE X,LIU Q,YANG Y.MV-GNN:multi-view graph neural network for compression artifacts reduction[J].IEEE Transactions on Image Processing,2020,29:6829-6840. [70] LI Y,YAO H,DUAN L,et al.Adaptive feature fusion via graph neural network for person re-identification[C]//Proceedings of the 27th ACM International Conference on Multimedia,2019:2115-2123. [71] SHEN Y,LI H,YI S,et al.Person re-identification with deep similarity-guided graph neural network[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:486-504. [72] WANG G,DONG G,LI H,et al.Remote sensing image synthesis via graphical generative adversarial networks[C]//Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium,2019:10027-10030. [73] MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems,2014. [74] YANG Z,HE X,GAO J,et al.Stacked attention networks for image question answering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:21-29. [75] TENEY D,ANDERSON P,HE X,et al.Tips and tricks for visual question answering:Learnings from the 2017 challenge[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4223-4232. [76] YANG Y,NEWSAM S.Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems,2010:270-279. [77] HUA Y,MOU L,ZHU X X.Label relation inference for multi-label aerial image classification[C]//Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium,2019:5244-5247. [78] MüLLER K,SCHWARZ H,MARPE D,et al.3D high-efficiency video coding for multi-view video and depth data[J].IEEE Transactions on Image Processing,2013,22(9):3366-3378. [79] SMOLIC A,MUELLER K,MERKLE P,et al.3D video and free viewpoint video-technologies,applications and MPEG standards[C]/Proceedings of the 2006 IEEE International Conference on Multimedia and Expo,2006:2161-2164. [80] FOI A,KATKOVNIK V,EGIAZARIAN K.Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images[J].IEEE Transactions on Image Processing,2007,16(5):1395-1411. [81] JUNG C,JIAO L,QI H,et al.Image deblocking via sparse representation[J].Signal Processing:Image Communication,2012,27(6):663-677. [82] CHANG H,NG M K,ZENG T.Reducing artifacts in JPEG decompression via a learned dictionary[J].IEEE Transactions on Signal Processing,2013,62(3):718-728. [83] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems,2014. [84] WANG H,WANG J,WANG J,et al.GraphGAN:graph representation learning with generative adversarial nets[J].arXiv:1711.08267,2017. [85] DING M,TANG J,ZHANG J.Semi-supervised learning on graphs with generative adversarial nets[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management,2018:913-922. [86] DENG J,DONG W,SOCHER R,et al.Imagenet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:248-255. [87] LIN T-Y,MAIRE M,BELONGIE S J,et al.Microsoft COCO:common objects in context[J].arXiv:1405.0312,2014. [88] LI J,WONG Y,ZHAO Q,et al.Dual-glance model for deciphering social relationships[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2650-2659. [89] BILIC P,CHRIST P F,VORONTSOV E,et al.The liver tumor segmentation benchmark(lits)[J].arXiv:1901. 04056,2019. [90] LIANG X,LIU S,SHEN X,et al.Deep human parsing with active template regression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(12):2402-2414. [91] LU C,KRISHNA R,BERNSTEIN M,et al.Visual relationship detection with language priors[C]//Proceedings of the European Conference on Computer Visioner,2016:852-869. [92] RUSANOVSKYY D,MüLLER K,VETRO A.Common test conditions of 3DV core experiments[C]//Joint Collaborative Team on 3D Video Coding Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 5th Meeting,2013:1-8. [93] ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1116-1124. [94] RISTANI E,SOLERA F,ZOU R,et al.Performance measures and a data set for multi-target,multi-camera tracking[C]//Proceedings of the European Conference on Computer Vision,2016:17-35. [95] LI W,ZHAO R,XIAO T,et al.Deepreid:deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:152-159. [96] XIA G-S,HU J,HU F,et al.AID:a benchmark data set for performance evaluation of aerial scene classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3965-3981. [97] CAMPOS-TABERNER M,ROMERO-SORIANO A,GATTA C,et al.Processing of extremely high-resolution Lidar and RGB data:outcome of the 2015 IEEE GRSS data fusion contest—part a:2-D contest[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(12):5547-5559. [98] YANG Z,COHEN W,SALAKHUDINOV R.Revisiting semi-supervised learning with graph embeddings[C]//Proceedings of the International Conference on Machine Learning,2016:40-48. [99] SONG S,LICHTENBERG S P,XIAO J.Sun RGB-D:a RGB-D scene understanding benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:567-576. [100] KRISHNA R,ZHU Y,GROTH O,et al.Visual genome:connecting language and vision using crowdsourced dense image annotations[J].International Journal of Computer Vision,2017,123(1):32-73. [101] ZHOU B,ZHAO H,PUIG X,et al.Semantic understanding of scenes through the ade20k dataset[J].International Journal of Computer Vision,2019,127(3):302-321. [102] EVERINGHAM M,VAN GOOL L,WILLIAMS C,et al.Pascal visual object classes challenge results[J].Available From WWW Pascal-Network Org,2005,1(6):7. [103] KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[D].Toronto:University of Toronto,2009. [104] HARIHARAN B,ARBEL??EZ P,BOURDEV L,et al.Semantic contours from inverse detectors[C]//Proceedings of the 2011 International Conference on Computer Vision,2011:991-998. [105] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:3213-3223. [106] TORRALBA A,FERGUS R,FREEMAN W T.80 million tiny images:a large data set for nonparametric object and scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970. [107] LI Q,HAN Z,WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,2018. [108] SIEGEL P H.THz technology:an overview[J].International Journal of High Speed Electronics and Systems,2003,13(2):351-394. [109] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015. [110] 梁延禹,李金宝.多尺度非局部注意力网络的小目标检测算法[J].计算机科学与探索,2020,14(10):1744-1753. LIANG Y Y,LI J B.Small objects detection method based on multi-scale non-local attention network[J].Journal of Frontiers of Computer Science and Technology,2020,14(10):1744-1753. |
[1] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[2] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[3] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[4] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[5] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[6] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[7] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[8] | LI Zhuorong, TANG Yunqi. Multimodal Biometric Fusion Model Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 180-189. |
[9] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[10] | GAO Teng, ZHANG Xianwu, LI Bai. Review on Application of Deep Learning in Helmet Wearing Detection [J]. Computer Engineering and Applications, 2023, 59(6): 13-29. |
[11] | JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang. Survey of Deep Learning Algorithms for Agricultural Pest Detection [J]. Computer Engineering and Applications, 2023, 59(6): 30-44. |
[12] | JIANG Qianyin, YU Zhi, LI Xiying. Application of Label-Bias Network in Datasets with Noisy Labels [J]. Computer Engineering and Applications, 2023, 59(6): 92-100. |
[13] | LI Yu, HAN Xiaohong, ZHANG Ling, ZHANG Haixuan, LI Gang. Seismic P-Wave First-Arrival Picking Model Based on Spatiotemporal Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(6): 113-124. |
[14] | LYU Xiaoling, YANG Shengyue, ZHANG Minglu, LIANG Ming, WANG Junchao. Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network [J]. Computer Engineering and Applications, 2023, 59(6): 241-250. |
[15] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||