WEI Wei, ZHANG Xin, ZHU Ye. Face Replacement Method Based on Dual Attention and Flow Estimation[J]. Computer Engineering and Applications, 2023, 59(7): 143-151.
[1] 林源,桂良琰,王生进,等.基于真实感三维头重建的人脸替换[J].清华大学学报(自然科学版),2012,52(5):602-606.
LIN Y,GUI L Y,WANG S J,et al.Face swapping based on 3D photo realistic head reconstuction[J].Journal of Tsinghua University(Science and Technology),2012,52(5):602-606.
[2] NIRKIN Y,MASI I,TRAN A T,et al.On face segmentation,face swapping,and face perception[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018),2018:98-105.
[3] 黄若冰,贾永红.利用卷积神经网络和小面元进行人脸图像替换[J].武汉大学学报(信息科学版),2021,46(3):335-340.
HUANG R B,JIA Y H.Face swapping using convolutional neural network and tiny facet primitive[J].Geomatics and Information Science of Wuhan University,2021,46(3):335-340.
[4] IRYNA K,WENZHE S,JONI D,et al.Fast face-swap using convolutional neural networks[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),2017:3677-3685.
[5] JO Y,PARK J.SC-FEGAN:face editing generative adversarial network with user’s sketch and color[C]//Proceedings of IEEE/CVF International Conference on Computer Vision(ICCV),2019:1745-1753.
[6] YUVAL N,YOSI K,TAL H.FSGAN:subject agnostic face swapping and reenactment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV),2019:7183-7192.
[7] LI L Z,BAO J M,YANG H,et al.Advancing high fidelity identity swapping for forgery detection[C]//Proceedings of the International Conference on Computer Vision and Pattern Recogintion(CVPR),2020:5073-5082.
[8] HUANG H B,LI Z H,HE R,et al.IntroVAE:introspective variational autoencoders for photographic image synthesis[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems,2018:52-63.
[9] HAN Z,IAN J G,DIMITRIS N M,et al.Self-attention generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning(ICML),2019:7354-7363.
[10] MA B,WANG X R,ZHANG H,et al.CBAM-GAN:generative adversarial networks based on convolutional block attention module[C]//Proceedings of the International Conference on Artificial Intelligence and Security(ICAIS),2019:227-236.
[11] FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:3146-3154.
[12] HUANG Z W,ZHANG T Y,HENG W,et al.RIFE:real-time intermediate flow estimation for video frame interpolation[J].arXiv:2011.06294,2020.
[13] MAO X,LI Q,XIE H,et al.Least squares generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision(ICCV),2017:2813-2821.
[14] JOHNSON J,ALAHI Al,LI F F.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the European Conference on Computer Vision,2016:694-711.
[15] ZHANG K P,ZHANG Z P,LI Z F,et al.MTCNN:joint face detection and alignmentusing multi-task cascaded convolutional networks[J].IEEE Signal Processing Letters,2016,23:1499-1503.
[16] RS S A,COZZOLINO D,VERDOLIVA L,et al.FaceForensics++:learning to detect manipulated facial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV),2019:1-11.
[17] RASSOOL R.VMAF reproducibility:validating a perceptual practical video quality metric[C]//Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting(BMSB),2017:1-2.