YE Zhaobing, DUAN Xianhua, ZHAO Chu. Research on Underwater Target Detection by Improved YOLOv3-SPP[J]. Computer Engineering and Applications, 2023, 59(6): 231-240.
[1] YEH C H,LIN C H,KANG L W,et al.Lightweight deep neural network for joint learning of underwater object detection and color conversion[J].IEEE Transactions on Neural Networks and Learning Systems,2021(99).
[2] CHEN X,LU Y,WU Z,et al.Reveal of domain effect:how visual restoration contributes to object detection in aquatic scenes[J].arXiv:2003.01913,2020.
[3] CHEN L,LIU Z,TONG L,et al.Underwater object detection using invert multi-class adaboost with deep learning[C]//2020 International Joint Conference on Neural Networks(IJCNN),2020:1-8.
[4] CHEN B,LI R,BAI W,et al.Research on recognition method of optical detection image of underwater robot for submarine cable[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),2019:1973-1976.
[5] HAO X,ZHANG G,MA S.Deep learning[J].International Journal of Semantic Computing,2016,10(3):417-439.
[6] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[7] SCHMIDHUBER J.Deep learning in neural networks:an overview[J].Neural Networks,2015,61:85-117.
[8] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[9] HE K,GKIOXARI G,PIOTR D,et al.MaskR-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017:2961-2969.
[10] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[J].arXiv:1512.02325,2015.
[12] 李庆忠,李宜兵,牛炯.基于改进YOLO和迁移学习的水下鱼类目标实时检测[J].模式识别与人工智能,2019,32(3):193-203.
LI Q Z,LI Y B,NIU J.Real-time detection of underwater fish based on improved YOLO and transfer learning[J].Pattern Recognition and Artificial Intelligence,2019,32(3):193-203.
[13] 朱世伟,杭仁龙,刘青山.基于类加权YOLO网络的水下目标检测[J].南京师大学报(自然科学版),2020,43(1):129-135.
ZHU S W,HANG R L,LIU Q S.Underwater object detection based on the class-weighted YOLO net[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(1):129-135.
[14] 刘萍,杨鸿波,宋阳.改进YOLOv3网络的海洋生物识别算法[J].计算机应用研究,2020,37(S1):394-397.
LIU P,YANG H B,SONG Y.Marine biometric algorithm based on improved YOLOv3 network[J].Application Research of Computers,2020,37(S1):394-397.
[15] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[16] GUO Y,LI H,ZHUANG P.Underwater image enhancement using a multiscale dense generative adversarial network[J].IEEE Journal of Oceanic Engineering,2019,45(3):862-870.
[17] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018.
[18] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:beyond empirical risk minimization[J].arXiv:1710.09412,2017.
[19] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:12993-13000.
[20] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[21] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.