Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (3): 33-48.DOI: 10.3778/j.issn.1002-8331.2207-0417
• Research Hotspots and Reviews • Previous Articles Next Articles
CHEN Xiaoting, LI Shi
Online:
2023-02-01
Published:
2023-02-01
陈晓婷,李实
CHEN Xiaoting, LI Shi. Survey on Emotion Recognition in Conversation[J]. Computer Engineering and Applications, 2023, 59(3): 33-48.
陈晓婷, 李实. 对话情绪识别综述[J]. 计算机工程与应用, 2023, 59(3): 33-48.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2207-0417
[1] MARIETTO M,AGUIAR R,BARBOSA G,et al.Artificial intelligence markup language:a brief tutorial[J].arXiv:1307.3091,2013. [2] GOODRICH M,SCHULTZ A.Human-robot interaction:a survey[J].Foundations and Trends in Human-Computer Interaction,2007,1(3):203-275. [3] MAYER J,ROBERTS R,BARSADE S.Human abilities:emotional intelligence[J].Annual Review of Psychology,2008,59(1):507-536. [4] RASHKIN H,SMITH E,LI M,et al.Towards empathetic open-domain conversation models:a new benchmark and dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence,PA:ACL,2019:5370-5381. [5] MA Y,NGUYEN K L,XING F Z,et al.A survey on empathetic dialogue systems[J].Information Fusion,2020,64:50-70. [6] MAJUMDER N,HONG P,PENG S,et al.MIME:mimicking emotions for empathetic response generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).PA:ACL,2020:8968-8979. [7] XIE B,PARK C H.Empathetic robot with transformer-based dialogue agent[C]//2021 18th International Conference on Ubiquitous Robots(UR).Gangneung,NJ:IEEE,2021:290-295. [8] CHATTERJEE A,NARAHARI K N,JOSHI M,et al.SemEval-2019 Task 3:emoContext contextual emotion detection in text[C]//Proceedings of the 13th International Workshop on Semantic Evaluation.Minneapolis,PA:ACL,2019:39-48. [9] SHEN T,JIA J,LI Y,et al.PEIA:personality and emotion integrated attentive model for music recommendation on social media platforms[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:206-213. [10] ZHANG Y,LAI G,MIN Z,et al.Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval.New York:ACM,2014:83-92. [11] MAHATA D,FRIEDRICHS J,SHAH R R,et al.Detecting personal intake of medicine from twitter[J].IEEE Intelligent Systems,2018,33(4):87-95. [12] GUO C,CAO J,ZHANG X,et al.DEAN:learning dual emotion for fake news detection on social media[J].arXiv:1728.1903,2017. [13] XIAO G,TU G,ZHENG L,et al.Multimodality sentiment analysis in social internet of things based on hierarchical attentions and CSAT-TCN with MBM network[J].IEEE Internet of Things Journal,2021,8(16):12748-12757. [14] COLNERIC N,DEMSAR J.Emotion recognition on twitter:comparative study and training a unison model[J].IEEE Transactions on Affective Computing,2018,11(3):433-446. [15] PORIA S,MAJUMDER N,MIHALCEA R,et al.Emotion recognition in conversation:research challenges,datasets,and recent advances[J].arXiv:1905.2947,2019. [16] MUNEZERO M,SUERO MONTERO C,SUTINEN E,et al.Are they different? affect,feeling,emotion,sentiment,and opinion detection in text[J].IEEE Transactions on Affective Computing,2014,5(2):101-111. [17] WEI L,WEI S,JI S,et al.BiERU:bidirectional emotional recurrent unit for conversational sentiment analysis[J].arXiv:2006.2492,2020. [18] LIAN Z,LIU B,TAO J.CTNet:conversational transformer network for emotion recognition[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021(29):985-1000. [19] MA H,WANG J,LIN H,et al.A multi-view network for real-time emotion recognition in conversations[J].Knowledge-Based Systems,2021,236:107751. [20] PORIA S,CAMBRIA E,HAZARIKA D,et al.Context-dependent sentiment analysis in user-generated videos[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Vancouver,PA:ACL,2017:873-883. [21] CHEN S,HSU C,KUO C,et al.EmotionLines:an emotion corpus of multi-party conversations[C]//Proceedings of the Eleventh International Conference on Language Resources and Evaluation,Miyazaki,2018. [22] 吴良庆,李寿山,王建成,等.基于神经主题模型的对话情感分析[J].中文信息学报,2020,34(1):106-112. WU L Q,LI S S,WANG J C,et al.Dialog sentiment analysis with neural topic model[J].Journal of Chinese Information Processing,2020,34(1):106-112. [23] HAZARIKA D,PORIA S,ZADEH A,et al.Conversational memory network for emotion recognition in dyadic dialogue videos[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.New Orleans,PA:ACL,2018:2122-2132. [24] HAZARIKA D,PORIA S,MIHALCEA R,et al.ICON:interactive conversational memory network for multimodal emotion detection[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels,PA:ACL,2018:2594-2604. [25] MAJUMDER N,PORIA S,HAZARIKA D,et al.DialogueRNN:an attentive RNN for emotion detection in conversations[J].arXiv:1405.1811,2014. [26] GHOSAL D,MAJUMDER N,PORIA S,et al.DialogueGCN:a graph convolutional neural network for emotion recognition in conversation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).Hong Kong,PA:ACL,2019:154-164. [27] SHEN W,CHEN J,QUAN X,et al.DialogXL:all-in-one XLNet for multi-party conversation emotion recognition[J].arXiv:2012.8695,2020. [28] 田雨亭.基于深度学习的对话情绪识别研究[D].武汉:华中师范大学,2021. TIAN Y T.Research on emotion recognition in conversation based on deep learning[D].Wuhan:Central China Normal University,2021. [29] WANG Y,ZHANG J,MA J,et al.Contextualized emotion recognition in conversation as sequence tagging[C]//Proceedings of the 21st Annual Meeting of the Special Interest Group on Discourse and Dialogue.PA:ACL,2020:186-195. [30] GAO Q,CAO B,GUAN X,et al.Emotion recognition in conversations with emotion shift detection based on multi-task learning[J].Knowledge-Based Systems,2022,248:108861. [31] HOFMANN T.Probabilistic latent semantic analysis[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence.New York:ACM,1999:289-296. [32] BLEI D,NG A,JORDAN M.Latent dirichlet allocation[J].The Journal of Machine Learning Research,2001,3:993-1022. [33] RANA T,CHEAH Y,LETCHMUNAN S.Topic modeling in sentiment analysis:a systematic review[J].Journal of ICT Research and Applications,2016,10:76-93. [34] XIANG B,ZHOU L.Improving twitter sentiment analysis with topic-based mixture modeling and semi-supervised training[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore,PA:ACL,2014:434-439. [35] REN Y,ZHANG Y,ZHANG M,et al.Improving twitter sentiment classification using topic-enriched multi-prototype word embeddings[C]//Proceedings of the 30th Conference on Artificial Intelligence,2016:3038-3044. [36] ZHU L,PERGOLA G,GUI L,et al.Topic-driven and knowledge-aware transformer for dialogue emotion detection[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.PA:ACL,2021:1571-1582. [37] JOSHI A,BHATTACHARYYA P,AHIRE S.Sentiment resources:lexicons and datasets[M]//A practical guide to sentiment analysis.[S.l.]:Springer,2017:85-106. [38] CHEN L,LEE C,CHEN M.Exploration of social media for sentiment analysis using deep learning[J].Soft Computing,2020,24:8187-8197. [39] PAN D,YUAN J,LI L,et al.Deep neural network-based classification model for sentiment analysis[J].arXiv:1907.2046,2019. [40] RABEYA T,FERDOUS S,ALI H,et al.A survey on emotion detection:a lexicon based backtracking approach for detecting emotion from Bengali text[C]//20th International Conference of Computer and Information Technology(ICCIT).Bangladesh,NJ:IEEE,2017:1-7. [41] STRAPPARAVA C,VALITUTTI A.WordNet-affect:an affective extension of wordNet[C]//Proceedings of the Fourth International Conference on Language Resources and Evaluation(LREC),Lisbon,2004:1083-1086. [42] MOHAMMAD S,TURNEY P.Crowdsourcing a word-emotion association lexicon[J].arXiv:1308.6297,2013. [43] LI Z,XIE H,CHENG G,et al.Word-level emotion distribution with two schemas for short text emotion classification[J].Knowledge-Based Systems,2021,227:107163. [44] PORIA S,GELBUKH A,CAMBRIA E,et al.Emosenticspace:a novel Framework for affective common-sense reasoning[J].Knowledge-Based Systems,2014,69:108-123. [45] BANDHAKAVI A S,WIRATUNGA N.Lexicon based feature extraction for emotion text classification[J].Pattern Recognition Letters,2016,93:133-142. [46] OJAMAA B,JOKINEN P A I K,MUISCHENK K.Sentiment analysis on conversational texts[C]//Proceedings of the 20th Nordic Conference of Computational Linguistics,Vilnius,Nodalida,2015:233-237. [47] MAZZOCUT M,TRUCCOLO I,ANTONINI M,et al.Web conversations about complementary and alternative medicines and cancer:content and sentiment analysis[J].Journal of Medical Internet Research,2016,18(6):e120. [48] BOTHE C,MAGG S,WEBER C,et al.Dialogue-based neural learning to estimate the sentiment of a next upcoming utterance[C]//Proceedings of the 26th International Conference on Artificial Neural Networks(ICANN),Alghero,2017:477-485. [49] SHIVHARE S N,GARG S,MISHRA A.Emotionfinder:detecting emotion from blogs and textual documents[C]//International Conference on Computing,Communication & Automation.Greater Noida,NJ:IEEE,2015:52-57. [50] MA C,HELMUT P.Emotion estimation and reasoning based on affective textual interaction[C]//Affective Computing and Intelligent Interaction(ACII).Berlin:Springer,2005:622-628. [51] HERZIG J,FEIGENBLAT G,SHMUELI-SCHEUER M,et al.Classifying emotions in customer support dialogues in social media[C]//17th Annual Meeting of the Special Interest Group on Discourse and Dialogue.Los Angeles,PA:ACL,2016:64-73. [52] JAIN V,KUMAR D S,FERNANDES S.Extraction of emotions from multilingual text using intelligent text processing and computational linguistics[J].Journal of Computational Science,2017,21:316-326. [53] HASAN M,RUNDENSTEINER E A,AGU E O.Emotex:detecting emotions in twitter messages[C]//Bigdata Socialcom Cybersecurity Conference,2014:27-31. [54] AMAN S,SZPAKOWICZ S.Identifying expressions of emotion in text[C]//Proceedings of the 10th International Conference on Text,Speech,and Dialogue.Berlin:Springer,2007. [55] GHAZI D,INKPEN D,SZPAKOWICZ S.Hierarchical versus flat classification of emotions in text[C]//Proceedings of the NAACLHLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.Stroudsburg,PA:ACL,2010:140-146. [56] DE BRUYNE L,DE CLERCQ O E E,HOSTE V E R.LT3 at SemEval-2018 Task 1:a classifier chain to detect emotions in tweets[C]//Proceedings of The 12th International Workshop on Semantic Evaluation.New Orleans,PA:ACL,2018:123-127. [57] SINGH L,SINGH S,AGGARWAL N.Two-stage text feature selection method for human emotion recognition[C]//Proceedings of 2nd International Conference on Communication,Computing and Networking,Lecture Notes in Networks and Systems.Singapore:Springer,2018:531-538. [58] HERZIG J,SHMUELI-SCHEUER M,KONOPNICKI D.Emotion detection from text via ensemble classification using word embeddings[C]//Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval(ICTIR’17).New York:ACM,2017:269-272. [59] GUPTA U,CHATTERJEE A,SRIKANTH R,et al.A sentiment-and-semantics-based approach for emotion detection in textual conversations[J].arXiv:1707.6996,2017. [60] HUANG C,TRABELSI A,ZA?ANE O.ANA at SemEval-2019 task 3:contextual emotion detection in conversations through hierarchical LSTMs and BERT[C]//Proceedings of the 13th International Workshop on Semantic Evaluation.Minneapolis,PA:ACL,2019:49-53. [61] HU D,WEI L,HUAI X.DialogueCRN:contextual reasoning networks for emotion recognition in conversations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.PA:ACL,2021:7042-7052. [62] ZHANG Y,TIWARI P,SONG D,et al.Learning interaction dynamics with an interactive LSTM for conversational sentiment analysis[J].Neural Networks,2021,133:40-56. [63] JIAO W,YANG H,KING I,et al.HiGRU:hierarchical gated recurrent units for utterance-level emotion recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Minneapolis,PA:ACL,2019:397-406. [64] MA H,WANG J,QIAN L,et al.HAN-ReGRU:hierarchical attention network with residual gated recurrent unit for emotion recognition in conversation[J].Neural Computing and Applications,2021,33(7):2685-2703. [65] LI J,ZHANG M,JI D,et al.Multi-task learning with auxiliary speaker identification for conversational emotion recognition[J].arXiv:1478.2003,2014. [66] JIANG T,XU B,ZHAO T,et al.CAN-GRU:a hierarchical model for emotion recognition in dialogue[C]//Proceedings of the 19th Chinese National Conference on Computational Linguistics.Haikou,Chinese Information Processing Society of China,2020:1101-1111. [67] ZHANG D,CHEN X,XU S,et al.Knowledge aware emotion recognition in textual conversations via multi-task incremental transformer[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona,PA:ACL,2020:4429-4440. [68] LI J,JI D,LI F,et al.HiTrans:a transformer-based context-and speaker-sensitive model for emotion detection in conversations[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona,International Committee on Computational Linguistics,2020:4190-4200. [69] TU G,WEN J,LIU C,et al.Context-and sentiment-aware networks for emotion recognition in conversation[J].IEEE Transactions on Artificial Intelligence,2022,1:1. [70] LIU H Z,LIN H Z,CHEN G.TANTP:conversational emotion recognition using tree-based attention networks with transformer pre-training[C]//Advances in Knowledge Discovery and Data Mining,2021:730-742. [71] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [72] KIPF T,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.2907,2016. [73] SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[J].arXiv:1703.6103,2017. [74] ISHIWATARI T,YASUDA Y,MIYAZAKI T,et al.Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).PA:ACL,2020:7360-7370. [75] SHEN W,WU S,YANG Y,et al.Directed a cyclic graph network for conversational emotion recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.PA:ACL,2021:1551-1560. [76] LIANG C,YANG C,XU J,et al.S+PAGE:a speaker and position-aware graph neural network model for emotion recognition in conversation[J].arXiv:2112.12389,2021. [77] SUN Y,YU N,FU G.A discourse-aware graph neural network for emotion recognition in multi-party conversation[C]//Findings of the Association for Computational Linguistics.Punta Cana,PA:ACL,2021:2949-2958. [78] ZHANG D,WU L,SUN C,et al.Modeling both context- and speaker-sensitive dependence for emotion detection in multi-speaker conversations[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,Macao,2019:5415-5421. [79] LIAN Z,LIU B,TAO J.DECN:dialogical emotion correction network for conversational emotion recognition[J].Neurocomputing,2021,454:6. [80] SHENG D,WANG D,SHEN Y,et al.Summarize before aggregate:a global-to-local heterogeneous graph inference network for conversational emotion recognition[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona,Spain,PA:ACL,2020:4153-4163. [81] 彭韬,杨亮,桑钟屹,等.基于异构二部图的对话情感分析[J].中文信息学报,2021,35(11):135-142. PENG T,YANG L,SANG Z Y,et al.Conversational sentiment analysis based on heterogeneous bipartite graphs[J].Journal of Chinese Information Processing,2021,35(11):135-142. [82] JIAO W,LYU M,KING I.Real-time emotion recognition via attention gated hierarchical memory network[J].arXiv:1911.9075,2019. [83] HINTON G,KRIZHEVSKY A,WANG S.Transforming auto-encoders[C]//21st International Conference on Artificial Neural Networks,Espoo,2011:44-51. [84] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[J].arXiv:1710.9829,2017. [85] XIAO Y,LI J,ZHAO Q,et al.Emotion recognition in conversation using capsule networks and gated recurrent units[C]//International Conference on Innovative Computing,Singapore,2022:59-67. [86] CERISARA C,JAFARITAZEHJANI S,OLUOKUN A,et al.Multi-task dialog act and sentiment recognition on Mastodon[J].arXiv:1807.5013,2018. [87] KIM M,KIM H.Integrated neural network model for identifying speech acts,predicators,and sentiments of dialogue utterances[J].Pattern Recognition Letters,2017,101:1-5. [88] QIN L,CHE W,LI Y,et al.DCR-Net:a deep co-interactive relation network for Joint dialog act recognition and sentiment classification[C]//The Thirty-Fourth AAAI Conference on Artificial Intelligence.New York,CA:AAAI,2020:8665-8672. [89] QIN L,LI Z,CHE W,et al.Co-GAT:a co-interactive graph attention network for joint dialog act recognition and sentiment classification[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence.New York,CA:AAAI,2021. [90] LI J,FEI H,JI D.Modeling local contexts for joint dialogue act recognition and sentiment classification with bi-channel dynamic convolutions[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona,PA:ACL,2020:616-626. [91] XING B,TSANG I.DARER:dual-task temporal relational recurrent reasoning network for joint dialog sentiment classification and act recognition[C]//Proceedings of the 28th International Conference on Computational Linguistics.Barcelona,PA:ACL,2022:616-626. [92] ZHANG Y,LI Q,SONG D,et al.Quantum-inspired interactive networks for conversational sentiment analysis[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,2019:5436-5442. [93] LI Q,GKOUMAS D,SORDONI A,et al.Quantum-inspired neural network for conversational emotion recognition[C]//Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence.CA:AAAI,2021:13270-13278. [94] YAN P,LI L,ZENG D.Quantum probability-inspired graph attention network for modeling complex text interaction[J].Knowledge-Based Systems,2021,234:107557. [95] ZHONG P,WANG D,MIAO C.Knowledge-enriched transformer for emotion detection in textual conversations[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Hong Kong,PA:ACL,2019:165-176. [96] GHOSAL D,MAJUMDER N,GELBUKH A,et al.COSMIC:commonsense knowledge for emotion identification in conversations[C]//Findings of the Association for Computational Linguistics.PA:ACL,2020:2470-2481. [97] LI J,LIN Z,FU P,et al.Past,present,and future:conversational emotion recognition through structural modeling of psychological knowledge[C]//Findings of the Association for Computational Linguistics.Punta Cana,PA:ACL,2021:1204-1214. [98] BALTRU?AITIS T,AHUJA C,MORENCY L.Multimodal machine learning:a survey and taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):423-443. [99] ZADEH A,CHEN M,PORIA S,et al.Tensor fusion network for multimodal sentiment analysis[J].arXiv:1707. 7250,2017. [100] LIU Z,SHEN Y,LAKSHMINARASIMHAN V B,et al.Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne,PA:ACL,2018:2247-2256. [101] MAI S,HU H,XING S.Divide,conquer and combine:hierarchical feature fusion network with local and global perspectives for multimodal affective computing[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence,PA:ACL,2019:481-492. [102] GU Y,YANG K,FU S,et al.Multimodal affective analysis using hierarchical attention strategy with word-level alignment[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne,PA:ACL,2018:2225-2235. [103] YOON S,BYUN S,DEY S,et al.Speech emotion recognition using multi-hop attention mechanism[C]//International Conference on Acoustics,Speech and Signal Processing(ICASSP).Brighton,NJ:IEEE,2019:2822-2826. [104] XU H,ZHANG H,HAN K,et al.Learning alignment for multimodal emotion recognition from speech[J].arXiv:1909.5645,2019. [105] TSAI Y H,BAI S,LIANG P P,et al.Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence,PA:ACL,2019:6558-6569. [106] WU C,LIN J,WEI W.Survey on audiovisual emotion recognition:databases,features,and data fusion strategies[J].APSIPA Transactions on Signal and Information Processing,2014,3:1-18. [107] ROZGI? V,ANANTHAKRISHNAN S,SALEEM S,et al.Ensemble of SVM trees for multimodal emotion recognition[C]//Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.Hollywood,NJ:IEEE,2012:1-4. [108] PéREZ ROSAS V,MIHALCEA R,MORENCY L.Multimodal sentiment analysis of spanish online videos[J].IEEE Intelligent Systems,2013,28(3):38-45. [109] JIN Q,LI C,CHEN S,et al.Speech emotion recognition with acoustic and lexical features[C]//2015 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).South Brisbane,NJ:IEEE,2015:4749-4753. [110] SCHULLER B,VALSTAR M,COWIE R,et al.AVEC 2012:the continuous audio/visual emotion challenge[C]//Proceedings of the ACM International Conference on Multimodal Interaction.California:ACM,2012. [111] HUANG J,LI Y,TAO J,et al.Continuous multimodal emotion prediction based on long short term memory recurrent neural network[C]//Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge.New York:ACM,2017:11-18. [112] KESSOUS L,CASTELLANO G,CARIDAKIS G.Multimodal emotion recognition in speech-based interaction using facial expression,body gesture and acoustic analysis[J].Journal on Multimodal User Interfaces,2009,3(1):33-48. [113] HUANG Y,YANG J,LIAO P,et al.Fusion of facial expressions and EEG for multimodal emotion recognition[J].Computational Intelligence and Neuroscience,2017(2):1-8. [114] MORVANT E,HABRARD A,AYACHE S.Majority vote of diverse classifiers for late fusion[J].arXiv:1404. 7796,2014. [115] SHUTOVA E,KIELA D,MAILLARD J.Black holes and white rabbits:metaphor identification with visual features[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.San Diego,PA:ACL,2016:160-170. [116] GLODEK M,TSCHECHNE S,LAYHER G,et al.Multiple classifier systems for the classification of audio-visual emotional states[J].Lecture Notes in Computer Science,2011,6975:359-368. [117] CHEN S,JIN Q.Multi-modal conditional attention fusion for dimensional emotion prediction[C]//Proceedings of the 24th ACM International Conference on Multimedia.New York:ACM,2016:571-575. [118] PORIA S,CAMBRIA E,HAZARIKA D,et al.Multi-level multiple attentions for contextual multimodal sentiment analysis[C]//2017 IEEE International Conference on Data Mining(ICDM).New Orleans,NJ:IEEE,2017:1033-1038. [119] CHOI J,LEE J.EmbraceNet:a robust deep learning architecture for multimodal classification[J].Information Fusion,2019,51:259-270. [120] XIE B,SIDULOVA M,PARK C H.Robust multimodal emotion recognition from conversation with transformer-based crossmodality fusion[J].Sensors,2021,21(14):4913. [121] LIAN Z,LIU B,TAO J.CTNet:conversational transformer network for emotion recognition[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:985-1000. [122] AGARWAL H,BANSAL K,JOSHI A,et al.Shapes of emotions:multimodal emotion recognition in conversations via emotion shifts[J].arXiv:1938.2112,2019. [123] REN M,HUANG X,SHI X,et al.Interactive multimodal attention network for emotion recognition in conversation[J].IEEE Signal Processing Letters,2021,28:1046-1050. [124] HU J,LIU Y,ZHAO J,et al.MMGCN:multimodal fusion via deep graph convolution network for emotion recognition in conversation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.PA:ACL,2021:5666-5675. [125] CERISARA C,JAFARITAZEHJANI S,OLUOKUN A,et al.Multi-task dialog act and sentiment recognition on Mastodon[C]//Proceedings of the 27th International Conference on Computational Linguistics.Santa Fe,PA:ACL,2018:745-754. [126] LI Y,SU H,SHEN X,et al.DailyDialog:a manually labelled multi-turn dialogue dataset[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing.Taipei,PA:ACL,2017:986-995. [127] CHEN S,HSU C,KUO C,et al.EmotionLines:an emotion corpus of multi-party conversations[J].arXiv:1802. 8379,2018. [128] ZAHIRI S,CHOI J.Emotion detection on TV show transcripts with sequence-based convolutional neural networks[J].arXiv:1708.4299,2017. [129] CHATTERJEE A,GUPTA U,CHINNAKOTLA M K,et al.Understanding emotions in text using deep learning and big data[J].Computers in Human Behavior,2019,93:309-317. [130] CHATTERJEE A,NARAHARI K N,JOSHI M,et al.SemEval-2019 task 3:emocontext contextual emotion detection in text[C]//Proceedings of the 13th International Workshop on Semantic Evaluation.Minneapolis,PA:ACL,2019:39-48. [131] BUSSO C,BULUT M,LEE C,et al.IEMOCAP:interactive emotional dyadic motion capture database[J].Language Resources and Evaluation,2008,42:335-359. [132] MCKEOWN G,VALSTAR M,COWIE R,et al.The SEMAINE database:annotated multimodal records of emotionally colored conversations between a person and a limited agent[J].IEEE Transactions on Affective Computing,2012,3(1):5-17. [133] PORIA S,HAZARIKA D,MAJUMDER N,et al.MELD:a multimodal multi-party dataset for emotion recognition in conversations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Florence,PA:ACL,2019:527-536. [134] SAHA T,PATRA A,SAHA S,et al.Towards emotion-aided multi-modal dialogue act classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.PA:ACL,2020:4361-4372. |
[1] | HU Xinjue, FU Zhangjie. Hiding Two Images with High Visual Quality [J]. Computer Engineering and Applications, 2023, 59(4): 235-242. |
[2] | GAN Yating, AN Jianye, XU Xue. Survey of Short Text Classification Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(4): 43-53. |
[3] | YANG Kunrong, XIONG Yu, ZHANG Jian, CHU Wen. Research on MOOC Dropout Prediction Strategy for Long- and Short-Term Mixed Data [J]. Computer Engineering and Applications, 2023, 59(4): 130-138. |
[4] | LI Ling, GUO Guangsong. Hybrid Many-Objective Evolutionary Optimization Combined with Indexs Decomposition [J]. Computer Engineering and Applications, 2023, 59(4): 165-174. |
[5] | ZHANG Han, ZHENG Weihao, DOU Zhicheng, WEN Jirong. Integrating Multi-Layer Structure Information of Law for Legal Judgement Prediction [J]. Computer Engineering and Applications, 2023, 59(3): 253-263. |
[6] | YANG Hanyu, ZHAO Xiaoyong, WANG Lei. Review of Data Normalization Methods [J]. Computer Engineering and Applications, 2023, 59(3): 13-22. |
[7] | DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan. Application of Deep Learning in Classification and Diagnosis of Alzheimer's Disease [J]. Computer Engineering and Applications, 2023, 59(3): 49-65. |
[8] | LIN Honghui, LIU Jianhua, ZHENG Zhixiong, HU Renyuan, LUO Yixuan. Multi-Task Network for Joint Dialog Act Recognition and Sentiment Classification [J]. Computer Engineering and Applications, 2023, 59(3): 104-111. |
[9] | LIN Yuan, WANG Kaiqiao, YANG Liang, LIN Hongfei, REN Lu, DING Kun. Sentiment Analysis of Peer Review Texts Based on Pu-Learning [J]. Computer Engineering and Applications, 2023, 59(3): 143-149. |
[10] | DING Shangshang, ZHENG Tianli, YAO Kang, ZHANG Hetong, PEI Ronghao, FU Weiwei. Deep-Learning-Based Research on Refractive Detection [J]. Computer Engineering and Applications, 2023, 59(3): 193-201. |
[11] | ZHANG Dongdong, GUO Jie, CHEN Yang. 3D Object Detection Algorithm Based on Raw Point Clouds [J]. Computer Engineering and Applications, 2023, 59(3): 209-217. |
[12] | LIN Lingde, LIU Na, WANG Zheng'an. Review of Research on Adapter and Prompt Tuning [J]. Computer Engineering and Applications, 2023, 59(2): 12-21. |
[13] | PEI Wenbin, WANG Hailong, LIU Lin, PEI Dongmei. Review of Musical Instrument Recognition in Music Information Retrieval [J]. Computer Engineering and Applications, 2023, 59(2): 34-47. |
[14] | PAN Mengzhu, LI Qianmu, QIU Tian. Survey of Research on Deep Multimodal Representation Learning [J]. Computer Engineering and Applications, 2023, 59(2): 48-64. |
[15] | WEI Shihong, LIU Hongmei, TANG Hong, ZHU Longjiao. Multilevel Metric Networks for Few-Shot Learning [J]. Computer Engineering and Applications, 2023, 59(2): 94-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||