Lightweight Masked Face Recognition Algorithm Incorporating Attention Mechanism
YE Zixun, ZHANG Hongying, HE Yujun
1.School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
2.Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
3.School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
[1] TAM S Y,TAM V C W,LAW H K W,et al.Rationale for mass masking in controlling the COVID-19 pandemic[J].Frontiers in Public Health,2021:2296-2565.
[2] WANG M,DENG W.Deep face recognition:a survey[J].Neurocomputing,2021,429:215-244.
[3] SCHROFF F,KALENICHENKO D,PHILBIN J.FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2015:815-823.
[4] DENG J,GUO J,XUE N,et al.ArcFace:additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2019:4690-5274.
[5] WANG H.CosFace:large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:5265-5274.
[6] HUANG G B,MATTAR M,BERG T,et al.Labeled faces in the wild:a database for studying face recognition in unconstrained environments[C]//Workshop on Faces in ‘Real-Life’ Images:Detection,Alignment,and Recognition,2008.
[7] JIA H,MARTINEZ A M.Support vector machines in face recognition with occlusions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2009:136-141.
[8] WU C Y,DING J J.Occluded face recognition using low-rank regression with generalized gradient direction[J].Pattern Recognition,2018,80:256-268.
[9] MONTERO D,NIETO M,LESKOVSKY P,et al.Boosting masked face recognition with multi-task arcface[J].arXiv:2104.09874,2021.
[10] FENG T,XU L,YUAN H,et al.Towards mask-robust face recognition[C]//IEEE Conference on Computer Vision(ICCV),2021:1492-1496.
[11] LI Y,GUO K,LU Y,et al.Cropping and attention based approach for masked face recognition[J].Applied Intelligence,2021:3012-3025.
[12] NETO P C,BOUTROS F,PINTO J R,et al.My eyes are up here:promoting focus on uncovered regions in masked face recognition[J].arXiv:2108.00996,2021.
[13] DING F,PENG P,HUANG Y,et al.Masked face recognition with latent part detection[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:2281-2289.
[14] CAI J,HAN H,CUI J,et al.Semi-supervised natural face deocclusion[J].IEEE Transactions on Information Forensics and Security,2020,16:1044-1057.
[15] GENG M,PENG P,HUANG Y,et al.Masked face recognition with generative data augmentation and domain constrained ranking[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:2246-2254.
[16] DIN N U,JAVED K,BAE S,et al.A novel GAN-based network for unmasking of masked face[J].IEEE Access,2020,8:44276-44287.
[17] MARTíNEZ-DíAZ Y,MéNDEZ-VáZQUEZ H,LUEVANO L S,et al.Towards accurate and lightweight masked face recognition:an experimental evaluation[J].IEEE Access,2021,10:7341-7353.
[18] DENG J K,GUO J,AN X,et al.Masked face recognition challenge:the insightFace track report[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2021:1437-1444.
[19] WANG J,LIU Y,HU Y,et al.Facex-zoo:a pytorch toolbox for face recognition[J].arXiv:2101.04407,2021.
[20] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2020:1580-1589.
[21] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[22] SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:4510-4520.
[23] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),2019:1314-1324.
[24] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2020:390-391.
[25] FENG Y,WU F,SHAO X,et al.Joint 3d face reconstruction and dense alignment with position map regression network[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:534-551.
[26] KARTYNNIK Y,ABLAVATSKI A,GRISHCHENKO I,et al.Real-time facial surface geometry from monocular video on mobile GPUs[J].arXiv:1907.06724,2019.
[27] YI D,LEI Z,LIAO S,et al.Learning face representation from scratch[J].arXiv:1411.7923,2014.
[28] WANG Z,WANG G,HUANG B,et al.Masked face recognition dataset and application[J].arXiv:2003.09093,2020.
[29] FU R,HU Q,DONG X,et al.Axiom-based Grad-CAM:towards accurate visualization and explanation of CNNs[J].arXiv:2008.02312,2020.
[30] SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al.Striving for simplicity:the all convolutional net[J].arXiv:1412.6806,2014.