Research Progress of Machine Vision in Crop Seed Inspection
WANG Hao, ZHU Yuhua, LI Zhihui, ZHEN Tong
1.Key Laboratory of Grain Information Processing and Control of the Ministry of Education (Henan University of Technology), Zhengzhou 450001, China
2.School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
WANG Hao, ZHU Yuhua, LI Zhihui, ZHEN Tong. Research Progress of Machine Vision in Crop Seed Inspection[J]. Computer Engineering and Applications, 2023, 59(22): 69-83.
[1] 王彦翔,张艳,杨成娅,等.基于深度学习的农作物病害图像识别技术进展[J].浙江农业学报,2019,31(4):669-676.
WANG Y X,ZHANG Y,YANG C Y,et al.Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning[J].Zhejiang Journal of Agriculture,2019,31(4):669-676.
[2] 周鸿达,张玉荣,王伟宇,等.基于机器视觉技术预测玉米质量等级的方法研究[J].粮油食品科技,2016,24(6):50-56.
ZHOU H D,ZHANG Y R,WANG W Y,et al.Identification method of maize quality grades based on machine vision[J].Science and Technology of Cereals,Oils and Foods,2016,24(6):50-56.
[3] 吕宗旺,金会芳,甄彤,等.图像处理技术在粮食害虫识别中的应用进展[J].河南工业大学学报(自然科学版),2021,42(3):128-137.
LV Z W,JIN H F,ZHEN T,et al.Application development of image processing technologies in grain pests identification[J].Journal of Henan University of Technology(Natural Science Edition),2021,42(3):128-137.
[4] 桂便.雾尘条件下粮库监控系统图像清晰化技术研究[D].郑州:河南工业大学,2021.
GUI B.Research on image clearness of grain depot monitoring system under fog and dust[D].Zhengzhou:Henan University of Technology,2021.
[5] 李学富.粮食不完善粒检测板的设计与应用[J].粮油仓储科技通讯,2015,31(5):50-52.
LI X F.Design and application of grain imperfection detection board[J].Science and Technology Communication of Grain and Oil Storage,2015,31(5):50-52.
[6] 于永华,于铁斌,郁伟,等.玉米不完善粒检验法的改进[J].粮食加工,2008(4):78-81.
YU Y H,YU T B,YU W,et al.Improvement of corn imperfection grain inspection method[J].Grain Processing,2008,33(4):78-81.
[7] 杨琳,张林,叶泽辉.基于集成学习和近红外光谱的玉米种子含水率预测方法研究[J].西北农业学报,2022,31(8):1025-1034.
YANG L,ZHANG L,YE Z H.Content in maize seeds based on ensemble learning and near infrared spectroscopy[J].Northwest Journal of Agriculture,2022,31(8):1025-1034.
[8] 吴静珠,张乐,李江波,等.基于高光谱与集成学习的单粒玉米种子水分检测模型[J].农业机械学报,2022,53(5):302-308.
WU J Z,ZHAGN L,LI J B,et al.Detection model of moisture content of single maize seed based on hyperspectral image and ensemble learning[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):302-308.
[9] 冯晓,张辉,周蕊,等.基于深度学习和籽粒双面特征的玉米品种识别[J].系统仿真学报,2021,33(12):2983-2991.
FENG X,ZHANG H,ZHOU R,et al.Variety recognition based on deep learning and double-sided characteristics of maize kernel[J].Journal of Systems Simulation,2021,33(12):2983-2991.
[10] 权龙哲,王建宇,王旗,等.基于电磁振动与卷积神经网络的玉米品质精选装置[J].江苏大学学报(自然科学版),2020,41(3):288-293.
QUAN L Z,WANG J Y,WANG Q,et al.Classification method of corn quality selection based on electromagnetic vibration and convolutional neural network[J].Journal of Jiangsu University(Natural Science Edition),2020,41(3):288-293.
[11] NI C,WANG D,VINSON R,et al.Automatic inspection machine for maize kernels based on deep convolutional neural networks[J].Biosystems Engineering,2019,178:131-144.
[12] GAO H,ZHEN T,LI Z.Detection of wheat unsound kernels based on improved ResNet[J].IEEE Access,2022,10:20092-20101.
[13] 粮油检验粮食、油料的杂质、不完善粒检验:GB/T 5494—2019[S].2019.
Inspection of grain and oils—determination of foreign matter and unsound kernels of grain and oilseeds:GB/T 5494—2019[S].2019.
[14] 孟繁佳,罗石,吴月峰,等.近红外光谱的玉米种子穗腐病特征提取与判别模型研究[J].光谱学与光谱分析,2022,42(6):1716-1720.
MENG F J,LUO S,WU Y F,et al.Characteristic extraction method and discriminant model of ear rot of maize seed base on NIR spectra[J].Spectroscopy and Spectral Analysis,2022,42(6):1716-1720.
[15] 王立国,王丽凤.结合高光谱像素级信息和CNN的玉米种子品种识别模型[J].遥感学报,2021,25(11):2234-2244.
WANG L G,WANG L F.Variety identification model for maize seeds using hyperspectral pixel-level information combined with convolutional neural network[J].Journal of Remote Sensing,2021,25(11):2234-2244.
[16] 张玉荣,王伟宇,周显青,等.基于外观特征识别玉米不完善粒检测方法[J].河南工业大学学报(自然科学版),2015,36(2):1-7.
ZHAGN Y R,WANG W Y,ZHOU X Q,et al.Identification method of unsound kernels of maize based on appearance features[J].Journal of Henan University of Technology(Natural Science Edition),2015,36(2):1-7.
[17] 王林柏,刘景艳,周玉宏,等.基于分水岭算法结合卷积神经网络的玉米种子质量检测[J].中国农机化学报,2021,42(12):168-174.
WANG L B,LIU J Y,ZHOU Y H,et al.Corn seed quality detection based on watershed algorithm and convolutional neural network[J].Chinese Journal of Agricultural Chemistry,2021,42(12):168-174.
[18] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention,Munich,Oct 5-9,2015.Cham:Springer,2015:234-241.
[19] 张俊雄,荀一,李伟.基于形态特征的玉米种子表面裂纹检测方法[J].光学精密工程,2007,15(6):951-956.
ZHANG J X,XUN Y,LI W.Detection of surface cracks of corn kernel based on morphology[J].Optics and Precision Engineering,2007,15(6):951-956.
[20] 张楠楠,刘伟,王伟,等.基于图像处理的玉米颗粒霉变程度检测方法研究[J].中国粮油学报,2015,30(10):112-116.
ZHAGN N N,LIU W,WANG W,et al.Research on detection of moldy degree for corn kernels based on image processing[J].Chinese Journal of Cereals and Oils,2015,30(10):112-116.
[21] 闫彬,杨福增,郭文川.基于机器视觉技术检测裂纹玉米种子[J].农机化研究,2020,42(5):181-185.
YAN B,YANG F Z,GUO W C.Detection of maize seeds with cracks based on machine vision technology[J].Agricultural Mechanization Research,2020,42(5):181-185.
[22] WANG R,HAN F,JIN Y,et al.Correlation between moisture content and machine vision image characteristics of corn kernels[J].International Journal of Food Properties,2020,23(1):319-328.
[23] 崔亮.基于机器视觉的农作物种子计数检测系统[D].太原:中北大学,2016.
CUI L.A counting detection system for crop seeds based on machine vision[D].Taiyuan:North Central University,2016.
[24] BREIMAN L.Random forests[J].Machine Learning,2001,45:5-32.
[25] 王超鹏.基于机器视觉与光谱成像技术的玉米种子品质检测与分选[D].杨凌:西北农林科技大学,2017.
WANG C P.Inspection and classification for the quality of maize seeds based on machine vision and spectral imaging technology[D].Yangling:Northwest Agriculture and Forestry University,2017.
[26] 汪勇.基于图像识别技术对玉米种子品种识别探究[J].分子植物育种,2022,20(2):672-676.
WANG Y.Research on recognition of corn seed varieties based on image recognition technology[J].Molecular Plant Breeding,2022,20(2):672-676.
[27] YANG W,WANG X,CAO S,et al.Multi-class wheat moisture detection with 5GHz Wi-Fi:a deep LSTM approach[C]//Proceedings of the 2018 27th International Conference on Computer Communication and Networks,Hangzhou,2018:1-9.
[28] JAVANMARDI S,MIRAEI ASHTIANI S H,VERBEEK F J,et al.Computer-vision classification of corn seed varieties using deep convolutional neural network[J].Journal of Stored Products Research,2021,92:101800.
[29] KHAKI S,PHAM H,HAN Y,et al.Convolutional neural networks for image-based corn kernel detection and counting[J].Sensors,2020,20(9):2721.
[30] PANG L,MEN S,YAN L,et al.Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques[J].IEEE Access,2020,8:123026-123036.
[31] 黄敏,夏超,朱启兵,等.融合高光谱图像技术与MS-3DCNN的小麦种子品种识别模型[J].农业工程学报,2021,37(18):153-160.
HUANG M,XIA C,ZHU Q B,et al.Recognizing wheat seed varieties using hyperspectral imaging technology combined with multi-scale 3D convolution neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(18):153-160.
[32] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.
1556,2014.
[33] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[34] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9.
[35] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[36] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:2261-2269.
[37] XIE S,GIRSHICK R,DOLLAR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:5987-5995.
[38] 吕梦棋,张芮祥,贾浩,等.基于改进ResNet玉米种子分类方法研究[J].中国农机化学报,2021,42(4):92-98.
LV M Q,ZHANG R X,JIA H,et al.Research on seed classification based on improved ResNet[J].Chinese Journal of Agricultural Chemistry,2021,42(4):92-98.
[39] XU P,TAN Q,ZHANG Y,et al.Research on maize seed classification and recognition based on machine vision and deep learning[J].Agriculture,2022,12(2):232.
[40] KHATRI A,AGRAWAL S,CHATTERJEE J M.Wheat seed classification:utilizing ensemble machine learning approach[J].Scientific Programming,2022.DOI:10.1155/2022/2626868.
[41] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30,2017.
[42] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[43] BI C,HU N,ZOU Y,et al.Development of deep learning methodology for maize seed variety recognition based on improved swin transformer[J].Agronomy,2022,12(8):1843.
[44] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28,2015.
[45] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271.
[46] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision,Amsterdam,Oct 11-14,2016.Cham:Springer,2016:21-37.
[47] ZHAO C,QUAN L,LI H,et al.Precise selection and visualization of maize kernels based on electromagnetic vibration and deep learning[J].Transactions of the ASABE,2020,63(3):629-643.
[48] 范晓飞,王林柏,刘景艳,等.基于改进YOLO v4的玉米种子外观品质检测方法[J].农业机械学报,2022,53(7):226-233.
FAN X F,WANG LB,LIN J Y,et al.Corn seed appearance quality estimation based on improved YOLOv4[J].Journal of Agricultural Machinery,2022,53(7):226-233.
[49] LIU Y,LV Z,HU Y,et al.Improved cotton seed breakage detection based on YOLOv5s[J].Agriculture,2022,12(10):1630.
[50] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722.
[51] 王剑哲,吴秦.坐标注意力特征金字塔的显著性目标检测算法[J].计算机科学与探索,2023,17(1):154-165.
WANG J Z,WU Q.Salient object detection based on coordinate attention feature pyramid[J].Journal of Frontiers of Computer Science and Technology,2023,17(1):154-165.
[52] 李斌,李亚霖,朱新山,等.基于注意力机制与特征平衡的变电站多目标检测[J].电网技术,2022,46(6):2122-2131.
LI B,LI Y L,ZHU X S,et al.Multi-target detection in substation scence based on attention mechanism and feature balance[J].Power System Technology,2022,46(6):2122-2131.
[53] REZATOFIIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:658-666.
[54] SHI Y,LI J,YU Z,et al.Multi-barley seed detection using iphone images and YOLOv5 model[J].Foods,2022,11(21):3531.
[55] 王晓丽,李伟.浅谈粮食破损粒的形成原因及应对措施建议[J].粮油加工,2006(11):27-28.
WANG X L,LI W.The causes of grain breakage and proposed countermeasures[J].Cereals and Oils Processing,2006(11):27-28.
[56] 唐文富.如何鉴别玉米质量[J].江西畜牧兽医杂志,2013(6):38-39.
TANG W F.How to identify the quality of corn[J].Jiangxi Journal of Animal Husbandry and Veterinary Medicine,2013(6):38-39.
[57] 王应彪,贾贺鹏,李明,等.基于OpenCV算法的玉米种子品质检测分级方法研究[J].林业机械与木工设备,2017,45(5):35-39.
WANG Y B,JIA H P,LI M,et al.Study on maize seed quality inspection and grading methods based on OpenCV algorithm[J].Forestry Machinery and Woodworking Equipment,2017,45(5):35-39.
[58] KIRATIRATANAPRUK K.Color and texture for corn seed classification by machine vision[C]//Proceedings of the 2011 International Symposium on Intelligent Signal Processing and Communication Systems,2011.
[59] HUANG S,FAN X,SUN L,et al.Research on classification method of maize seed defect based on machine vision[J].Journal of Sensors,2019.DOI:10.1155/2019/2716975.
[60] 李兴旺.基于多光谱成像的种子外观与纯度检测方法研究[D].保定:河北农业大学,2021.
LI X W.Research on detection method of seed appearance and purity based on multispectral imaging[D].Bao-
ding:Hebei Agricultural University,2021.
[61] WANG L,LIU J,ZHANG J,et al.Corn seed defect detection based on watershed algorithm and two-pathway convolutional neural networks[J].Frontiers in Plant Science,2022,13:730190.
[62] 付传广.基于深度学习的玉米颗粒检测与分类研究[D].西安:陕西师范大学,2020.
FU C G.Research on corn particle detection and classification based on deep learning[D].Xi’an:Shaanxi Normal University,2020.
[63] LI X,DU Y,YAO L,et al.Design and experiment of a broken corn kernel detection device based on the Yolov4-Tiny algorithm[J].Agriculture,2021,11(12):1238.
[64] VELESACA H O,MIRA R,SUAREZ P L,et al.Deep learning based corn kernel classification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,Seattle,2020:294-302.
[65] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:2961-2969.
[66] 徐光达,毛国君.多层级特征融合的无人机航拍图像目标检测[J].计算机科学与探索,2023,17(3):635-645.
XU G D,MAO G J.Aerial image object detection of UAV based on multi-level feature fusion[J].Journal of Frontiers of Computer Science and Technology,2023,17(3):635-645.
[67] 王燕萍,吕磊,苏志龙,等.基于深度学习的高质量图像生成方法综述[J].激光杂志,2023,44(6):7-12.
WANG Y P,LV L,SU Z L,et al.Overview of high-quality image generation methods based on deep learning[J].Laser Journal,2023,44(6):7-12.