Insulator Contamination Detection Algorithm Based on Rotating Frame Location
WANG Xinliang, JI Angzhi, LI Ziqiang
1.School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China
2.XJ Electric Co., Ltd., Xuchang, Henan 461000, China
WANG Xinliang, JI Angzhi, LI Ziqiang. Insulator Contamination Detection Algorithm Based on Rotating Frame Location[J]. Computer Engineering and Applications, 2023, 59(21): 319-326.
[1] 邱彦,郭裕钧,张血琴,等.基于高光谱技术的绝缘子污秽成分识别方法[J].高电压技术,2020,46(11):4023-4030.
QIU Y,GUO Y J,ZHANG X Q,et al.Identification method of insulator pollution components based on hyperspectral technology[J].High Voltage Engineering,2020,46(11):4023-4030.
[2] 付鹏,姚建刚,龚磊.利用红外特征和Softmax回归识别绝缘子污秽等级[J].计算机工程与应用,2015,51(13):181-185.
FU P,YAO J G,GONG L.Contamination grades recognition of insulators using infrared features and Softmax regression[J].Computer Engineering and Applications,2015,51(13):181-185.
[3] 罗潇,於锋,彭勇.基于深度学习的无人机电网巡检缺陷检测研究[J].电力系统保护与控制,2022,50(10):132-140.
LUO X,YU F,PENG Y.UAV power grid inspection defect detection based on deep learning[J].Power System Protection and Control,2022,50(10):132-140.
[4] 顾晓东,唐丹宏,黄晓华.基于深度学习的电网巡检图像缺陷检测与识别[J].电力系统保护与控制,2021,49(5):91-97.
GU X D,TANG D H,HUANG X H.Deep learning-based defect detection and recognition of a power grid inspection image[J].Power System Protection and Control,2021,49(5):91-97.
[5] 李彩林,张青华,陈文贺,等.基于深度学习的绝缘子定向识别算法[J].电子与信息学报,2020,42(4):1033-1040.
LI C L,ZHANG Q H,CHEN W H,et al.Insulator orientation detection based on deep learning[J].Journal of Electronics & Information Technology,2020,42(4):1033-1040.
[6] DING J,XUE N,LONG Y,et al.Learning roi transformer for oriented object detection in aerial images[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition.Long Bench:IEEE,2019:2849-2858.
[7] YANG X,YANG J R,YAN J C,et al.SCRDet:towards more robust detection for small,cluttered and rotated objects[C]//2019 IEEE/CVF International Conference on Computer Vision.South Korea:IEEE,2019:8232-8241.
[8] XU Y C,FU M T,WANG Q M,et al.Gliding vertex on the horizontal bounding box for multi oriented object detection[J].IEEE Transactionson Pattern Analysis and Machine Intelligence,2020,43(4):1452-1459.
[9] YANG X,YAN J C,HE T.On the arbitrary-oriented object detection:classification based approaches revisited[EB/OL].[2022-07-16].https://arxiv.org/abs/2003.05597v3.
[10] YANG X,YAN J C,FENG Z M,et al.R3Det:refined single-stage detector with feature refinement for rotating oject[EB/OL].[2022-07-16].https://arxiv.org/abs/1908.05612v6.
[11] HAN J M,DING J,LI J,et al.Align deep features for oriented object detection[J].IEEE Transactions on Geoscience and Remote Sensing,2022(60):1-11.
[12] 曲优,李文辉.基于锚框变换的单阶段旋转目标检测[J].吉林大学学报(工学版),2022,52(1):162-173.
QU Y,LI W H.Single-stage rotated object detection network based on anchor transformation[J].Journal of Jilin University(Engineering and Technology Edition),2022,52(1):162-173.
[13] YANG Z,LIU S H,HU H,et al.RepPoints:point set representation for object detection[EB/OL].[2022-07-16].https://arxiv.org/abs/1904.11490.
[14] 徐昌贵,张波,高建威,等.FCOSR:一种无锚框的SAR图像任意朝向船舶目标检测网络[J].雷达学报,2022,11(3):335-346.
XU C G,ZHANG B,GAO J W,et al.FCOSR:an anchor-free method for arbitrary-oriented ship detection in SAR images[J].Journal of Radars,2022,11(3):335-346.
[15] 王明阳,王江涛,刘琛.基于关键点的遥感图像旋转目标检测[J].电子测量与仪器学报,2021,35(6):102-108.
WANG M Y,WANG J T,LIU C.Remote sensing image rotation object detection based on key points[J].Journal of Electronic Measurement and Instrumentation,2021,35(6):102-108.
[16] YANG X,YAN J C,MING Q,et al.Rethinking rotated object detection with gaussian wasserstein distance loss[EB/OL].[2022-07-16].https://arxiv.org/abs/2101.11952.
[17] YANG X,YANG X J,YANG J R,et al.Learning high-precision bounding box for rotated object detection via Kullback-Leibler divergence[EB/OL].[2022-07-16].https://arxiv.org/abs/2106.01883.
[18] YANG X,ZHOU Y,ZHANG G F,et al.The KFIoU loss for rotated object detection[EB/OL].[2022-07-16].https://arxiv.org/abs/2201.12558.
[19] LIN S,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision(ICCV),October 22-29,2017,Venice,Italy.New York:IEEE,2017:2980-2988.
[20] XIA G S,BAI X,DING J,et al.DOTA:a large scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:3974-3983.
[21] LIU Z,MAO H Z,WU C Y,et al.A ConvNet for the 2020s[EB/OL].[2022-07-16].https://arxiv.org/abs/2201.03545.
[22] LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768.
[23] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[24] LIU Z,LIN Y T,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:10012-10022.
[25] LIN T,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition.USA:IEEE,2017:936-944.
[26] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149.