JIA Ying, ZHAO Feng, LI Bo, GE Shiyu. XGBoost Optimized by Bayesian Optimization for Credit Scoring[J]. Computer Engineering and Applications, 2023, 59(20): 283-294.
[1] 操玮,李灿,贺婷婷,等.基于集成学习的中国P2P网络贷款信用风险预警模型的对比研究[J].数据分析与知识发现,2018,22(10):65-76.
CAO W,LI C,HE T T,et al.Predicting credit risks of P2P loans in China based on ensemble learning methods[J].Data Analysis and Knowledge Discovery,2018,22(10):65-76.
[2] BAHNSEN A C,AOUADA D,OTTERSTEN B.Example-dependent cost-sensitive logistic regression for credit scoring[C]//International Conference on Machine Learning & Applications,2015.
[3] WEST D.Neural network credit scoring models[J].Computers & Operations Research,2000,27(11/12):1131-1152.
[4] 王静.基于BP神经网络和线性判别分析的信用评分模型研究[D].洛阳:河南科技大学,2022.
WANG J.Research on credit score model based on BP neural network and linear discriminant analysis[D].Luo-
yang:Henan University of Science and Technology,2022.
[5] HUANG C L,CHEN M C,WANG C J.Credit scoring with a data mining approach based on support vector machines[J].Expert Systems with Applications,2007,33(4):847-856.
[6] NING C,RIBEIRO B,AN C.Financial credit risk assessment:a recent review[J].Artificial Intelligence Review,2016,45(1):1-23.
[7] KAO L J,CHIU C C,CHIU F Y.A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring[J].Knowledge-Based Systems,2012:245-252.
[8] QIAN H Y,MA P,GAO S F,et al.Soft reordering one-dimensional convolutional neural network for credit scoring[J].Knowledge-Based Systems,2023,266:110414.
[9] GICI? A,?ONKO D,SUBASI A.Intelligent credit scoring using deep learning methods[J].Concurrency and Computation:Practice and Experience,2023,35:7637.
[10] XIA Y F,LIU C Z,LI Y Y,et al.A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J].Expert Systems with Applications,2017,78:225-241.
[11] LESSMANN S,BAESENS B,SEOW H,et al.Benchmarking state-of-the-art classification algorithms for credit scoring:an update of research[J].European Journal of Perational Research,2015,247:124-136.
[12] DAHIYA S,HANDA S S,SINGH N P.A feature selection enabled hybrid-bagging algorithm for credit risk evaluation[J].Expert Systems,2017,34(9):e12217.
[13] XIA Y,LIU C,DA B A.Novel heterogeneous ensemble credit scoring model based on stacking approach[J].Expert Systems with Applications,2018,93:182-199.
[14] LIU W,FAN H,XIA M.Multi-grained and multi-layered gradient boosting decision tree for credit scoring[J].Applied Intelligence,2021:1-17.
[15] CHEN T Q,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//ACM SIGKDD 2016:2016 International Conference on Knowledge Discovery & Data Mining,2016:785-794.
[16] KALYANI P,MANASA Y,AHAMMAD S H,et al.Prediction of patient’s neurological recovery from cervical spinal cord injury through XGBoost learning approach[J].European Spine Journal,2023,32(6):2140-2148.
[17] 王博文,王景升,吴恩重.面向不平衡数据集的SMOTENC-XGBoost驾驶人交通安全评估模型[J].科学技术与工程,2023,23(2):831-837.
WANG B W,WANG J S,WU E Z.SMOTENC-XGBoost driver traffic safety assessment model for unbalanced dataset[J].Science Technology and Engineering,2023,23(2):831-837.
[18] 王智勇,李丽敏,温宗周,等.基于GWO-XGBoost泥石流灾害预测[J].电子测量技术,2023,46(3):92-99.
WANG Z Y,LI L M,WEN Z Z,et al.Debris flow disaster prediction based on GWO-XGBoos model[J].Electronic Measurement Technology,2023,46(3):92-99.
[19] CHANG G J.Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions[J].Applied Soft Computing,2018,73:914-920.
[20] QIN C,ZHANG Y,BAO F,et al.XGBoost optimized by adaptive particle swarm optimization for credit scoring[J].Mathematical Problems in Engineering,2021:1-18.
[21] PELIKAN M.Bayesian optimization algorithm:from singl elevel to hierarchy[D].Urbana-Champaign:University of Illinois at Urbana-Champaign.Dept of Coputer Science,2002.
[22] PELIKAN M,GOLDBERG D E,CANTU-PAZ E.BOA:the Bayesan optimization algorithm[C]//Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-99),1999:525-532.
[23] 江敏,陈一民.贝叶斯优化算法的发展综述[J].计算机工程与设计,2010(14):3254-3259.
JIANG M,CHEN Y M.Survey on Bayesian optimization algorithm[J].Computer Engineering and Design,2010(14):3254-3259.
[24] 王永生,关世杰,刘利民,等.基于XGBoost扩展金融因子的风电功率预测方法[J].浙江大学学报(工学版),2023,57(5):1038-1049.
WANG?Y S,?GUAN?S J,LIU?L M,et al.Wind power prediction method based on XGBoost extended financial factor[J].Journal of Zhejiang University(Engineering Science),2023,57(5):1038-1049.
[25] SNOEK J,LAROCHELLE H,ADAMS R P.Practical Bayesian optimization of machine learning algorithms[C]//Advances in Neural Information Processing Systems,2012:2951-2959.
[26] 李叶紫,王振友,周怡璐,等.基于贝叶斯最优化的Xgboost算法的改进及应用[J].广东工业大学学报,2018,35(1):23-27.
LI Y Z,WANG Z Y,ZHOU Y L,et al.The improvement and application of Xgboost method based on the Bayesian optimization[J].Journal of Guangdong University of Technology,2018,35(1):23-27.
[27] WU J,CHEN X Y,ZHANG H,et al.Hyperparameter optimization for machine learning models based on Bayesian optimization[J].Journal of Electronic Science and Technology,2019,17(1):26-40.
[28] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20:273-297.
[29] BREIMAN L.Bagging predictors[J].Machine Learning,1996,24:123-140.
[30] BREIMAN L.Random forests[J].Machine Learning,2001,45:5-32.
[31] FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139.
[32] HAND D J.Classifier technology and the illusion of progress[J].Statistical Science,2006,21:1-14.
[33] FLOREZ-LOPEZ R,RAMON-JERONIMO J M.Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment.A correlated-adjusted decision forest proposal[J].Expert Systems with Applications,2015,42(13):5737-5753.