Research on Optimization of YOLOv5 Detection Algorithm for Object in Complex Road
LIU Hui, LIU Xinman, LIU Dadong
1.School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2.Research Center of Digital Intelligence Technology Application, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
LIU Hui, LIU Xinman, LIU Dadong. Research on Optimization of YOLOv5 Detection Algorithm for Object in Complex Road[J]. Computer Engineering and Applications, 2023, 59(18): 207-217.
[1] CHEN X,KUNDU K,ZHANG Z,et al.Monocular 3D object detection for autonomous dring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016.Piscataway,NJ:IEEE,2016:2147-2156.
[2] SONG S,XIAO J.Deep sliding shapes for amodal 3D object detection in RGB-D images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016.Piscataway,NJ:IEEE,2016:808-816.
[3] CHEN X,KUNDU K,ZHU Y,et al.3D object proposals using stereo imagery for accurate object class detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(5):1259-1272.
[4] LOWE D G.Distinctive image features from scale-invariant keypoints[C]//International Conference on Computer Vision,Barcelona,Nov 06-13,2011.Piscataway,NJ:IEEE,2012:2564-2571.
[5] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,Jun 20-25,2005.Piscataway,NJ:IEEE,2005:886-893.
[6] ZHOU Y,TUZEL O.VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,Jun 18-23,2018.Piscataway,NJ:IEEE,2018:4490-4499.
[7] YAN Y,MAO Y,LI B.SECOND:sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337.
[8] 曹磊,王强,史润佳,等.基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法[J].东南大学学报(自然科学版),2021,51(1):87-91.
CAO L,WANG Q,SHI R J,et al.Method for vehicle target detection on SAR image based on improved RPN in Faster-RCNN[J].Journal of Southeast University(Natural Science Edition),2021,51(1):87-91.
[9] YIN Q,YANG W,RAN M,et al.FD-SSD:an improved SSD object detection algorithm based on feature fusion and dilated convolution[J].Signal Processing:Image Communication,2021,98:116402.
[10] 郁强,王宽,王海.一种多尺度YOLOv3的道路场景目标检测算法[J].江苏大学学报(自然科学版),2021,42(6):628-633.
YU Q,WANG K,WANG H.A multiscale YOLOv3 detection algorithm of road scene object[J].Journal of Jiangsu University(Natural Science Edition),2021,42(6):628-633.
[11] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,Jun 27-30,2016.Piscataway,NJ:IEEE,2016:779-788.
[12] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Jul 21-26,2017,Honolulu,HI,USA.Piscataway,NJ:IEEE,2017:6517-6525.
[13] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].(2018-04-08)[2023-04-18].https://arxiv.org/abs/1804.02767.
[14] BOCHKOVSKIY A,WANG C Y,LIAO H M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-05)[2023-04-18].https://arxiv.org/pdf/2004.10934.
[15] WANG P,FU S,CAO X.Improved lightweight target detection algorithm for complex roads with YOLOv5[C]//2022 International Conference on Machine Learning and Intelligent Systems Engineering(MLISE),Guangzhou,China,Aug 05-07,2022.Piscataway,NJ:IEEE,2022:275-283.
[16] 郑玉珩,黄德启.改进MobileViT与YOLOv4的轻量化车辆检测网络[J].电子测量技术,2023,46(2):175-183.
ZHENG Y Y,HUANG D Q.Lightweight vehicle detection network based on MobileViT and YOLOv4[J].Electronic Measurement Technology,2023,46(2):175-183.
[17] LI F F,JIA D,KAI L.ImageNet:constructing a large-scale image database[J].Journal of Vision,2009,9(8):1037-1037.
[18] LIU Y,LI B F.Bayesian hierarchical K-means clustering[J].Intelligent Data Analysis,2020,24(5):977-992.
[19] ARTHUR D,VASSILVITSKII S.K-means++:the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms(SODA),Jan 07-09,2007.Philadelphia:SIAM,2007:1027-1035.
[20] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,Jun 16-21,2012.Piscataway,NJ:IEEE,2012:3354-3361.
[21] BUYVAL A,GABDULLIN A,MASTAFIN R,et al.Realtime vehicle and pedestrian tracking for didi udacity self-driving car challenge[C]//2018 IEEE International Conference on Robotics and Automation(ICRA),Brisbane,May 21-25,2018.Piscataway,NJ:IEEE,2018:2064-2069.
[22] LEE Y,HWANG J W,LEE S,et al.An energy and GPU computation efficient backbone network for real-time object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Compuer Vision and Pattern Recognition Workshops,Long Beach,Jun 16-17,2019.Piscataway,NJ:IEEE,2019:756-760.
[23] HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv.1704.04861,2017.
[24] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Berlin,German,Feb 7-12,2020.New York,NY:ACM,2020:12993-13000.
[25] ZHANG Y F,REN W,ZHANG Z,et al.Focal and efficient IoU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157.