Knowledge Graph Attention Network Recommendation Algorithm Combined with User’s Perspective
ZHANG Xiao, LIU Yuan
1.School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
2.Jiangsu Provincial Key Laboratory of Media Design and Software Technology, Wuxi, Jiangsu 214122, China
[1] 朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报(自然科学版),2012,41(2):163-175.
ZHU Y Y,LV L Y.Evaluation metrics for recommender systems[J].Journal of University of Electronic Science and Technology of China(Natural Science Edition),2012,41(2):163-175.
[2] 王国霞,刘贺平.个性化推荐系统综述[J].计算机工程与应用,2012,48(7):66-76.
WANG G X,LIU H P.Survey of personalized recommendation system[J].Computer Engineering and Applications,2012,48(7):66-76.
[3] LI K,WAN P Z,ZHANG D Z.Collaborative filtering recommendation algorithm based on improved user similarity measure and score prediction[J].Journal of Chinese Computer Systems,2018,39(3):567-571.
[4] LI Y,WANG H J,LIU H L,et al.A study on content-based video recommendation[C]//2017 IEEE International Conference on Image Processing(ICIP),2017:4581-4585.
[5] 刘纵横,汪海涛,姜瑛,等.基于混合神经网络的序列推荐算法[J].重庆邮电大学学报(自然科学版),2021,33(3):466-474.
LIU Z H,WANG H T,JIANG Y,et al.Sequence recommendation algorithm based on hybrid neural network[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2021,33(3):466-474.
[6] YU X,REN X,SUN Y,et al.Personalized entity recommendation:heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining,2014:283-292.
[7] SHI C,ZHANG Z,LUO P,et al.Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,2015:453-462.
[8] ZHAO H,YAO Q,LI J,et al.Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2017:635-644.
[9] WANG H,ZHANG F,XIE X,et al.DKN:deep knowledge-aware network for news recommendation[C]//27th International Conference on World Wide Web,2018:1835-1844.
[10] ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,California,USA:ACM,2016:353-362.
[11] WANG Q,MAO Z,WANG B,et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743.
[12] GUO Q Y,ZHUANG F Z,QIN C,et al.A survey on knowledge graph-based recommender systems[J].arXiv:2003.00911,2020.
[13] WANG H W,ZHANG F Z,WANG J L,et al.Ripplenet:propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management,2018:417-426.
[14] 吴博,梁循,张树森,等.图神经网络前沿进展与应用[J].计算机学报,2022,45(1):35-68.
WU B,LIANG X,ZHANG S S,et al.Advances and applications in graph neural network[J].Chinese Journal of Computers,2022,45(1):35-68.
[15] WANG X,HE X,WANG M,et al.Neural graph colla-borative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval,2019:165-174.
[16] HE X,DENG K,WANG X,et al.Lightgcn:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,2020:639-648.
[17] WANG H W,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//World Wide Web Conference(WWW’19),New York,USA,2019:3307-3313.
[18] ZHAO J,ZHOU Z,GUAN Z,et al.Intentgc:a scalable graph convolution framework fusing heterogeneous information for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2019:2347-2357.
[19] HU B B,SHI C,ZHAO W X,et al.Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:1531-1540.
[20] WANG X,WANG D,XU C,et al.Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):5329-5336.
[21] WANG X,HE X N,CAO Y,et al.KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2019:950-958.
[22] WANG Z,LIN G,TAN H,et al.CKAN:collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,2020:219-228.
[23] 唐宏,范森,唐帆.融合协同知识图谱与优化图注意网络的推荐算法[J].计算机工程与应用,2022,58(19):98-106.
TANG H,FAN S,TANG F.Recommendation algorithm integrating collaborative knowledge graph and optimizing graph attention network[J].Computer Engineering and Applications,2022,58(19):98-106.
[24] CAO Y,WANG X,HE X,et al.Unifying knowledge graph learning and recommendation:towards a better understanding of user preferences[C]//The World Wide Web Conference,2019:151-161.
[25] RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[J].arXiv:1205.2618,2012.