Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (16): 31-49.DOI: 10.3778/j.issn.1002-8331.2212-0251
• Research Hotspots and Reviews • Previous Articles Next Articles
HU Hangle, CHENG Chunlei, YE Qing, PENG Lin, SHEN Youzhi
Online:
2023-08-15
Published:
2023-08-15
胡杭乐,程春雷,叶青,彭琳,沈友志
HU Hangle, CHENG Chunlei, YE Qing, PENG Lin, SHEN Youzhi. Survey of Open Information Extraction Research[J]. Computer Engineering and Applications, 2023, 59(16): 31-49.
胡杭乐, 程春雷, 叶青, 彭琳, 沈友志. 开放信息抽取研究综述[J]. 计算机工程与应用, 2023, 59(16): 31-49.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2212-0251
[1] JURAFSKY D,MARTIN J H.Na?ve Bayes classifier approach to word sense disambiguation[J].Computational Lexical Semantics,2009. [2] YATES A,BANKO M,BROADHEAD M,et al.TextRunner:open information extraction on the web[C]//Proceedings of Human Language Technologies:the Annual Conference of the North American Chapter of the Association for Computational Linguistics,2007:25-26. [3] NIKLAUS C,CETTO M,FREITAS A,et al.A survey on open information extraction[J].arXiv:1806.05599,2018. [4] STANOVSKY G,DAGAN I.Creating a large benchmark for open information extraction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:2300-2305. [5] BHARDWAJ S,AGGARWAL S,MAUSAM M.CaRB:a crowdsourced benchmark for open IE[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:6262-6267. [6] GASHTEOVSKI K,YU M,KOTNIS B,et al.BenchIE:open information extraction evaluation based on facts,not tokens[J].arXiv:2109.06850,2021. [7] LI J,SUN A,HAN J,et al.A survey on deep learning for named entity recognition[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(1):50-70. [8] YANG S,WANG Y,CHU X.A survey of deep learning techniques for neural machine translation[J].arXiv:2002. 07526,2020. [9] VASILKOVSKY M,ALEKSEEV A,MALYKH V,et al.DETIE:multilingual open information extraction inspired by object detection[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence,2022. [10] CABRAL B S,SOUZA M,CLARO D B.Explainable OpenIE classifier with morpho-syntactic rules[C]//Proceedings of the 2020 Workshop on Hybrid Intelligence for Natural Language Processing Tasks Co-located with 24th European Conference on Artificial Intelligence,2020:7-15. [11] KOTNIS B,GASHTEOVSKI K,RUBIO D,et al.MILIE:modular & iterative multilingual open information extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2022:6939-6950. [12] MAUSAM M.Open information extraction systems and downstream applications[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence,2016:4074-4077. [13] WU F,WELD D S.Open information extraction using Wikipedia[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,2010:118-127. [14] SCHMITZ M,SODERLAND S,BART R,et al.Open language learning for information extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,2012:523-534. [15] SAHA S,PAL H.Bootstrapping for numerical open IE[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers),2017:317-323. [16] CHITICARIU L,LI Y,REISS F.Rule-based information extraction is dead! Long live rule-based information extraction systems![C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,2013:827-832. [17] FADER A,SODERLAND S,ETZIONI O.Identifying relations for open information extraction[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,2011:1535-1545. [18] AKBIK A,L?SER A.KRAKEN:[N]-ary facts in open information extraction[C]//Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction,2012:52-56. [19] MESQUITA F,SCHMIDEK J,BARBOSA D.Effectiveness and efficiency of open relation extraction[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,2013:447-457. [20] STANOVSKY G,FICLER J,DAGAN I,et al.Getting more out of syntax with PROPS[J].arXiv:1603.01648,2016. [21] FALKE T,STANOVSKY G,GUREVYCH I,et al.Porting an open information extraction system from English to German[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:892-898. [22] KUEBLER J,TONG L,JIANG M.Multi-round parsing-based multiword rules for scientific OpenIE[J].arXiv:2108. 02074,2021. [23] DEL CORRO L,GEMULLA R.CLAUSIE:clause-based open information extraction[C]//Proceedings of the 22nd International Conference on World Wide Web,2013:355-366. [24] SCHMIDEK J,BARBOSA D.Improving open relation extraction via sentence re-structuring[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation,2014:3720-3723. [25] ANGELI G,PREMKUMAR M J J,MANNING C D.Leveraging linguistic structure for open domain information extraction[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),2015:344-354. [26] CHRISTENSEN J,SODERLAND S,ETZIONI O.An analysis of open information extraction based on semantic role labeling[C]//Proceedings of the 6th International Conference on Knowledge Capture,2011:113-120. [27] PAL H.Demonyms and compound relational nouns in nominal open IE[C]//Proceedings of the 5th Workshop on Automated Knowledge Base Construction,2016:35-39. [28] SAHA S.Open information extraction from conjunctive sentences[C]//Proceedings of the 27th International Conference on Computational Linguistics,2018:2288-2299. [29] BAST H,HAUSSMANN E.Open information extraction via contextual sentence decomposition[C]//2013 IEEE 7th International Conference on Semantic Computing,2013:154-159. [30] BHUTANI N,JAGADISH H V,RADEV D.Nested propositions in open information extraction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:55-64. [31] GASHTEOVSKI K,GEMULLA R,CORRO L.MINIE:minimizing facts in open information extraction[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,2017:2630-2640. [32] CETTO M,NIKLAUS C,FREITAS A,et al.Graphene:semantically-linked propositions in open information extraction[J].arXiv:1807.11276,2018. [33] MANN W C,THOMPSON S A.Rhetorical structure theory:toward a functional theory of text organization[J].Text-Interdisciplinary Journal for the Study of Discourse,1988,8(3):243-281. [34] DE MARNEFFE M C,MANNING C D.The Stanford typed dependencies representation[C]//Proceedings of the Workshop on Cross-Framework and Cross-Domain Parser Evaluation,2008:1-8. [35] MERHAV Y,MESQUITA F,BARBOSA D,et al.Extracting information networks from the blogosphere[J].ACM Transactions on the Web,2012,6(3):1-33. [36] BALLESTEROS M,BOHNET B,MILLE S,et al.Deep-syntactic parsing[C]//Proceedings of the 25th International Conference on Computational Linguistics:Technical Papers,2014:1402-1413. [37] MADAAN A,MITTAL A,RAMAKRISHNAN G,et al.Numerical relation extraction with minimal supervision[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence,2016. [38] NAKASHOLE N,WEIKUM G,SUCHANEK F.PATTY:a taxonomy of relational patterns with semantic types[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,2012:1135-1145. [39] XU Y,KIM M Y,QUINN K M,et al.Open information extraction with tree kernels[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2013:868-877. [40] JOHANSSON R,NUGUES P.Dependency-based semantic role labeling of PropBank[C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,2008:69-78. [41] KOLLURU K,ADLAKHA V,AGGARWAL S,et al.OpenIE6:iterative grid labeling and coordination analysis for open information extraction[J].arXiv:2010.03147,2020. [42] KOLLURU K,AGGARWAL S,RATHORE V,et al.IMOJIE:iterative memory-based joint open information extraction[J].arXiv:2005.08178,2020. [43] NAYAK N,KOWARSKY M,ANGELI G,et al.A dictionary of nonsubsective adjectives:CSTR 2014-04[R].Stanford University.Department of Computer Science,2014. [44] JI H,GRISHMAN R,DANG H T,et al.Overview of the TAC 2010 knowledge base population track[C]//Proceedings of the 3rd Text Analysis Conference,2010. [45] SURDEANU M.Overview of the TAC2013 knowledge base population evaluation:English slot filling and temporal slot filling[J].Theory and Applications of Categories,2013,8:2. [46] SODERLAND S,GILMER J,BART R,et al.Open information extraction to KBP relations in 3 hours[C]//Proceedings of the 6th Text Analysis Conference,2013. [47] SCHNEIDER R,OBERHAUSER T,KLATT T,et al.Analysing errors of open information extraction systems[J].arXiv:1707.07499,2017. [48] CUI L,WEI F,ZHOU M.Neural open information extraction[J].arXiv:1805.04270,2018. [49] SUN M,LI X,WANG X,et al.Logician:a unified end-to-end neural approach for open-domain information extraction[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining,2018:556-564. [50] LIU G,LI X,WANG J,et al.Extracting knowledge from web text with Monte Carlo tree search[C]//Proceedings of the Web Conference 2020,2020:2585-2591. [51] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [52] STANOVSKY G,MICHAEL J,ZETTLEMOYER L,et al.Supervised open information extraction[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,(Volume 1:Long Papers),2018:885-895. [53] ROY A,PARK Y,LEE T,et al.Supervising unsupervised open information extraction models[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:728-737. [54] SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681. [55] SARHAN I,SPRUIT M R.Contextualized word embeddings in a neural open information extraction model[C]//Proceedings of the 2019 International Conference on Applications of Natural Language to Information Systems.Cham:Springer,2019:359-367. [56] HU H,XING Q,CHEN M.Enhanced distant supervised open information extraction[C]//Proceedings of the 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics,2021:619-624. [57] SUI D,CHEN Y,LIU K,et al.Joint entity and relation extraction with set prediction networks[J].arXiv:2011. 01675,2020. [58] ZHANG R H,LIU Q,FAN A X,et al.Minimize exposure bias of Seq2Seq models in joint entity and relation extraction[J].arXiv:2009.07503,2020. [59] YU B,WANG Y,LIU T,et al.Maximal clique based non-autoregressive open information extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,2021:9696-9706. [60] ZENG D,LIU K,LAI S,et al.Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics:Technical Papers,2014:2335-2344. [61] HAN J,WANG H.Generative adversarial networks for open information extraction[J].Advances in Computational Intelligence,2021,1(4):1-11. [62] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [63] ZHAN J,ZHAO H.Span model for open information extraction on accurate corpus[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:9523-9530. [64] RO Y,LEE Y,KANG P.Multi2OIE:multilingual open information extraction based on multi-head attention with BERT[J].arXiv:2009.08128,2020. [65] TSAI Y H H,BAI S,LIANG P P,et al.Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics,2019:6558-6569. [66] KOLLURU K,MOHAMMED M,MITTAL S,et al.Alignment-augmented consistent translation for multilingual open information extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2022:2502-2517. [67] LYU Z,SHI K,LI X,et al.Multi-grained dependency graph neural network for Chinese open information extraction[C]//Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer,2021:155-167. [68] VELI?KOVI? P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [69] DOZAT T,MANNING C D.Deep biaffine attention for neural dependency parsing[J].arXiv:1611.01734,2016. [70] ATMANI M,LAFOURCADE M.Universal dependencies for multilingual open information extraction[C]//Proceedings of the 3rd Conference on Language,Data and Knowledge,2021. [71] QI P,ZHANG Y,ZHANG Y,et al.Stanza:a Python natural language processing toolkit for many human languages[J].arXiv:2003.07082,2020. [72] NIVRE J,DE MARNEFFE M C,GINTER F,et al.Universal dependencies v1:a multilingual treebank collection[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation,2016:1659-1666. [73] LI Y,YANG Y,HU Q,et al.An argument extraction decoder in open information extraction[C]//Proceedings of the 43rd European Conference on Information Retrieval.Cham:Springer,2021:313-326. [74] WANG J,ZHENG X,YANG Q,et al.Towards nested and fine-grained open information extraction[C]//Proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing.Singapore:Springer,2021:185-197. [75] BAYAT F F,BHUTANI N,JAGADISH H V.CompactIE:compact facts in open information extraction[J].arXiv:2205.02880,2022. [76] WANG Y,SUN C,WU Y,et al.UniRE:a unified label space for entity relation extraction[J].arXiv:2107.04292,2021. [77] PONTI E M,VULI? I,COTTERELL R,et al.Towards zero-shot language modeling[J].arXiv:2108.03334,2021. [78] SOLAWETZ J,LARSON S.LSOIE:a large-scale dataset for supervised open information extraction[J].arXiv:2101. 11177,2021. [79] HE L,LEWIS M,ZETTLEMOYER L.Question-answer driven semantic role labeling:using natural language to annotate natural language[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,2015:643-653. [80] LéCHELLE W,GOTTI F,LANGLAIS P.Wire57:a fine-grained benchmark for open information extraction[J].arXiv:1809.08962,2018. [81] WHITE A S,REISINGER D,SAKAGUCHI K,et al.Universal decompositional semantics on universal dependencies[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:1713-1723. [82] HAN J,WANG H.Improving open information extraction with distant supervision learning[J].Neural Processing Letters,2021,53(5):3287-3306. [83] TANG J,LU Y,LIN H,et al.Syntactic and semantic-driven learning for open information extraction[J].arXiv:2103.03448,2021. [84] VAN LE D,MONTGOMERY J,KIRKBY K,et al.Adding an inception network to neural network open information extraction[J].IEEE Intelligent Systems,2022,37(3):85-97. [85] ROTH M,LAPATA M.Neural semantic role labeling with dependency path embeddings[J].arXiv:1605.07515,2016. [86] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [87] GASHTEOVSKI K,WANNER S,HERTLING S,et al.OPIEC:an open information extraction corpus[J].arXiv:1904.12324,2019. [88] BROSCHEIT S,GASHTEOVSKI K,ACHENBACH M.OpenIE for slot filling at TAC KBP 2017-system description[C]//Proceedings of the 2017 Text Analysis Conference,2017. [89] GASHTEOVSKI K,GEMULLA R,KOTNIS B,et al.On aligning OpenIE extractions with knowledge bases:a case study[C]//Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems,2020:143-154. [90] GAMALLO P,GARCIA M.Multilingual open information extraction[C]//Proceedings of the 17th Portuguese Conference on Artificial Intelligence.Cham:Springer,2015:711-722. [91] BENDER E.English isn’t generic for language,despite what NLP papers might lead you to believe[C]//Symposium on Data Science & Statistics,2019. [92] BENDER E M.Linguistically na?ve!= language independent:Why NLP needs linguistic typology[C]//Proceedings of the EACL 2009 Workshop on the Interaction Between Linguistics and Computational Linguistics:Virtuous,Vicious or Vacuous,2009:26-32. [93] YU B,ZHANG Z,SHENG J,et al.Semi-open information extraction[C]//Proceedings of the Web Conference 2021,2021:1661-1672. [94] YAN Z,TANG D,DUAN N,et al.Assertion-based QA with question-aware open information extraction[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,2018. [95] BHUTANI N,SUHARA Y,TAN W C,et al.Open information extraction from question-answer pairs[J].arXiv:1903.00172,2019. [96] GROTH P,LAURUHN M,SCERRI A,et al.Open information extraction on scientific text:an evaluation[J].arXiv:1802.05574,2018. |
[1] | GOU Yuanmin, YAN Jianwei, ZHANG Fugui, SUN Chengyu, XU Yong. Research Progress on Vision System and Manipulator of Fruit Picking Robot [J]. Computer Engineering and Applications, 2023, 59(9): 13-26. |
[2] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[3] | SUN Aijing, WANG Guoqing. Neighbor Relation-Aware Graph Convolutional Network for Recommendation [J]. Computer Engineering and Applications, 2023, 59(9): 112-122. |
[4] | LI Wenju, CHU Wanghui, CUI Liu, SU Pan, ZHANG Gan. 3D Object Detection Method Combining on Graph Sampling and Graph Attention [J]. Computer Engineering and Applications, 2023, 59(9): 237-244. |
[5] | WANG Changhai, LIANG Hui, WANG Bo, CUI Xiaoxu. Graph Convolutional Index Trend Prediction Based on Correlation of Index Constituent Stocks [J]. Computer Engineering and Applications, 2023, 59(9): 319-328. |
[6] | ZHANG Ting, ZHANG Xingzhong, WANG Huimin, YANG Gang, WANG Dawei. 3D Object Detection in Substation Scene Based on Graph Neural Network [J]. Computer Engineering and Applications, 2023, 59(9): 329-336. |
[7] | YANG Chongluo, SHENG Long, WEI Zhongcheng, WANG Wei. Research on COVID-19 Text Entity Relation Extraction and Dataset Construction Methods [J]. Computer Engineering and Applications, 2023, 59(8): 97-104. |
[8] | LU Lin, JI Fanfan, YUAN Xiaotong. Sparse Binary Programming Method for Pruning of Randomly Initialized Neural Networks [J]. Computer Engineering and Applications, 2023, 59(8): 138-147. |
[9] | LAN Hong, CHEN Hao, ZHANG Pufen. Point Cloud Classification and Segmentation Model Based on Graph Convolution and 3D Direction Convolution [J]. Computer Engineering and Applications, 2023, 59(8): 182-191. |
[10] | CUI Shaoguo, DU Xiao, YANG Zetian. Neural Recommendation Algorithm Using Combinations of Low and High-Order Features Based on Multi-Attention Mechanism [J]. Computer Engineering and Applications, 2023, 59(8): 192-199. |
[11] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[12] | LONG Qigang, WANG Jinming, LIANG Yan, SONG Jie, FENG Yadong, LI Peng, ZHAO Lingxiao. Classification of Esophageal Lesions in Endoscopic Images Using Convolutional Neural Network [J]. Computer Engineering and Applications, 2023, 59(7): 118-125. |
[13] | LI Zhuorong, TANG Yunqi. Multimodal Biometric Fusion Model Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 180-189. |
[14] | DENG Dejun, XU Hongzhen, WEI Shiyue. Stock Price Prediction Based on E-V-ALSTM Model [J]. Computer Engineering and Applications, 2023, 59(6): 101-112. |
[15] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||