Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (14): 30-38.DOI: 10.3778/j.issn.1002-8331.2210-0014
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Hongbo, CHEN Yue, LU Jicang, HOU Xuemei, YANG Kuiwu
Online:
2023-07-15
Published:
2023-07-15
刘洪波,陈越,卢记仓,侯雪梅,杨奎武
LIU Hongbo, CHEN Yue, LU Jicang, HOU Xuemei, YANG Kuiwu. Survey on Rule Mining for Knowledge Graph[J]. Computer Engineering and Applications, 2023, 59(14): 30-38.
刘洪波, 陈越, 卢记仓, 侯雪梅, 杨奎武. 面向知识图谱的规则挖掘研究综述[J]. 计算机工程与应用, 2023, 59(14): 30-38.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2210-0014
[1] CARLSON A,BETTERIDGE J,KISIEL B,et al.Toward an architecture for never-ending language learning[C]//Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,Atlanta,Georgia,USA,July 11-15,2010:1306-1313. [2] MITCHELL T,COHEN W,HRUSCHKA E,et al.Never-ending learning[J].Communications of the ACM,2018,61(5):103-115. [3] LEHMANN J,ISELE R,JAKOB M,et al.DBpedia-a large-scale,multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2):167-195. [4] SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web,2007:697-706. [5] MAHDISOLTANI F,BIEGA J,SUCHANEK F M.YAGO3:a knowledge base from multilingual Wikipedias[C]//Conference on Innovative Data Systems Research,2014. [6] VRANDE?I? D,KR?TZSCH M.Wikidata:a free collaborative knowledgebase[J].Communications of the ACM,2014,57(10):78-85. [7] ERXLEBEN F,GüNTHER M,KRTZSCH M,et al.Introducing Wikidata to the linked data web[C]//International Semantic Web Conference,2014:50-65. [8] EHRLINGER L,W?? W.Towards a definition of knowledge graphs[J].SEMANTiCS(Posters,Demos,SuCCESS),2016,48:2. [9] LI Weizhuo,QI Guilin,JI Qiu.Hybrid reasoning in knowledge graphs:combing symbolic reasoning and statistical reasoning[J].Semantic Web,2020,11(1):53-62. [10] 官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报,2018,29(10):2966-2994. GUAN S P,JIN X L,JIA Y T,et al.Knowledge reasoning over knowledge graph:a survey[J].Journal of Software,2018,29(10):2966-2994. [11] DONG X L,GABRILOVICH E,HEITZ G,et al.From data fusion to knowledge fusion[J].Proceedings of the VLDB Endowment,2014,7(10):881-892. [12] GAD-ELRAB M H,STEPANOVA D,URBANI J,et al.Exception-enriched rule learning from knowledge graphs[C]//International Semantic Web Conference.Cham:Springer,2016:234-251. [13] JIANG S,LOWD D,DOU D.Learning to refine an automatically extracted knowledge base using Markov logic[C]//2012 IEEE 12th International Conference on Data Mining,2012:912-917. [14] ZHANG Wen,CHEN Jiaoyan,LI Juan,et al.Knowledge graph reasoning with logics and embeddings:survey and perspective[J].arXiv:2202.07412,2022. [15] STEPANOVA D,GAD-ELRAB M H,HO V T.Rule induction and reasoning over knowledge graphs[C]//Reasoning Web International Summer School.Cham:Springer,2018:142-172. [16] FüRNKRANZ J,KLIEGR T.A brief overview of rule learning[C]//International Symposium on Rules and Rule Markup Languages for the Semantic Web.Cham:Springer,2015:54-69. [17] MARTINEZ D C,HITZLER P.Extending description logic rules[C]//Extended Semantic Web Conference,2012:345-359. [18] 周志华.机器学习[M].北京:清华大学出版社,2018:347-363. ZHOU Z H.Machine learning[M].Beijing:Tsinghua University Press,2018:347-363. [19] CHEN Xiaojun,JIA Shengbin,XIANG Yang.A review:knowledge reasoning over knowledge graph[J].Expert Systems with Applications,2020,141:112948. [20] SCHOENMACKERS S,DAVIS J,ETZIONI O,et al.Learning first-order horn clauses from web text[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,2010:1088-1098. [21] LANDWEHR N,KERSTING K,DE RAEDT L.Integrating Naive Bayes and FOIL[J].Journal of Machine Learning Research,2007,8(3):481-507. [22] LANDWEHR N,PASSERINI A,DE RAEDT L,et al.Fast learning of relational kernels[J].Machine Learning,2010,78(3):305-342. [23] 王昊奋,漆桂林,陈华钧.知识图谱方法、实践与应用[M].北京:电子工业出版社,2019:43-47. WANG H F,QI G L,CHEN H J.Knowledge graph methods,practices and applications[M].Beijing:Publishing House of Electronics Industry,2019:43-47. [24] JI S,PAN S,CAMBRIA E,et al.A survey on knowledge graphs:representation,acquisition,and applications[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(2):494-514. [25] SUCHANEK F M,LAJUS J,BOSCHIN A,et al.Knowledge representation and rule mining in entity-centric knowledge bases[M]//Reasoning web.explainable artificial intelligence.Cham:Springer,2019:110-152. [26] GALáRRAGA L A,TEFLIOUDI C,HOSE K,et al.AMIE:association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web,2013:413-422. [27] GALáRRAGA L,TEFLIOUDI C,HOSE K,et al.Fast rule mining in ontological knowledge bases with AMIE+[J].The VLDB Journal,2015,24(6):707-730. [28] LAJUS J,GALáRRAGA L,SUCHANEK F.Fast and exact rule mining with amie 3[C]//European Semantic Web Conference,2020:36-52. [29] MEILICKE C,FINK M,WANG Y,et al.Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion[C]//International Semantic Web Conference.Cham:Springer,2018:3-20. [30] MEILICKE C,CHEKOL M W,RUFFINELLI D,et al.Anytime bottom-up rule learning for knowledge graph completion[C]//Proceedings of IJCAI,2019:3137-3143. [31] MEILICKE C,CHEKOL M W,FINK M,et al.Reinforced anytime bottom up rule learning for knowledge graph completion[J].arXiv:2004.04412,2020. [32] OTT S,MEILICKE C,SAMWALD M.SAFRAN:an interpretable,rule-based link prediction method outperforming embedding models[J].arXiv:2109.08002,2021. [33] WANG Z,LI J.RDF2Rules:learning rules from RDF knowledge bases by mining frequent predicate cycles[J].arXiv:1512.07734,2015. [34] BARATI M,BAI Q,LIU Q.Mining semantic association rules from RDF data[J].Knowledge-Based Systems,2017,133:183-196. [35] OMRAN P G,WANG K,ZHE W.Scalable rule learning via learning representation[C]//Twenty-Seventh International Joint Conference on Artificial Intelligence,2018:2149-2155. [36] OMRAN P G,WANG K,WANG Z.An embedding-based approach to rule learning in knowledge graphs[J].IEEE Transactions on Knowledge and Data Engineering,2021(4):1348-1359. [37] OMRAN P G,WANG Z,WANG K.Learning rules with attributes and relations in knowledge graphs[C]//AAAI Spring Symposium:MAKE,2022. [38] ZHANG W,PAUDEL B,WANG L,et al.Iteratively learning embeddings and rules for knowledge graph reasoning[C]//The World Wide Web Conference,2019:2366-2377. [39] COHEN W W.Tensorlog:a differentiable deductive database[J].arXiv:1605.06523,2016. [40] WANG P W,STEPANOVA D,DOMOKOS C,et al.Differentiable learning of numerical rules in knowledge graphs[C]//International Conference on Learning Representations,2019:1-12. [41] YANG F,YANG Z,COHEN W W.Differentiable learning of logical rules for knowledge base reasoning[C]//Advances in Neural Information Processing Systems,2017:2319-2328. [42] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Neural Information Processing Systems(NIPS),2013:1-9. [43] NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//International Conference on International Conference on Machine Learning,2011:809-816. [44] YANG B,YIH W T,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[C]//International Conference on Learning Representations,2014:1-13. [45] NEELAKANTAN A,ROTH B,MCCALLUM A.Compositional vector space models for knowledge base inference[C]//National Conference on Artificial Intelligence,2015:156-166. [46] LIU H,WU Y,YANG Y.Analogical inference for multi-relational embeddings[C]//International Conference on Machine Learning,2017:2168-2178. [47] 刘藤,陈恒,李冠宇.联合FOL规则的知识图谱表示学习方法[J].计算机工程与应用,2021,57(4):100-107. LIU T,CHEN H,LI G Y.Knowledge graph representation learning method jointing FOL rules[J].Computer Engineering and Applications,2021,57(4):100-107. [48] TERU K,DENIS E,HAMILTON W.Inductive relation prediction by subgraph reasoning[C]//International Conference on Machine Learning,2020:9448-9457. [49] XU Z,YE P,CHEN H,et al.Ruleformer:context-aware differentiable rule mining over knowledge graph[J].arXiv:2209.05815,2022. [50] OMRAN P G,WANG Z,WANG K.Knowledge graph rule mining via transfer learning[C]//Proceedings of PAKDD,2019:489-500. [51] SUN Y,GUO J,LI B,et al.Effective rule mining of sparse data based on transfer learning[C]//World Wide Web,2022:1-20. [52] RAZNIEWSKI S,SUCHANEK F,NUTT W.But what do we actually know?[C]//Proceedings of the 5th Workshop on Automated Knowledge Base Construction,2016:40-44. [53] TRAN M D,D’AMATO C,NGUYEN B T,et al.Comparing rule evaluation metrics for the evolutionary discovery of multi-relational association rules in the semantic web[C]//European Conference on Genetic Programming,2018:289-305. [54] SUCHANEK F M,ABITEBOUL S,SENELLART P.PARIS:probabilistic alignment of relations,instances,and schema[J].Proceedings of the VLDB Endowment(PVLDB),2011,5(3):157-168. [55] EBISU T,ICHISE R.Graph pattern entity ranking model for knowledge graph completion[C]//Proceedings of NAACL-HLT,2019:988-997. |
[1] | QIU Ling, ZHANG Ansi, ZHANG Yu, LI Shaobo, LI Chuanjiang, YANG Lei. Application Method of Knowledge Graph Construction for UAV Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(9): 280-288. |
[2] | QIU Yunfei, XING Haoran, LI Gang. Summary of Research on Construction of Knowledge Graph for Mine Construction [J]. Computer Engineering and Applications, 2023, 59(7): 64-79. |
[3] | LIU Jianfeng, PU Jiexin, SUN Lifan. Double Deep Q-Network by Fusing Contrastive Predictive Coding [J]. Computer Engineering and Applications, 2023, 59(6): 162-170. |
[4] | ZHANG Jiayu, GUO Mei, ZHANG Yongliang, LI Mei, GENG Nan, GENG Yaojun. Research on Construction of Fine-Grained Knowledge Graph of Apple Diseases and Pests [J]. Computer Engineering and Applications, 2023, 59(5): 270-280. |
[5] | WU Guodong, WANG Xueni, LIU Yuliang. Research Advances on Graph Neural Network Recommendation of Knowledge Graph Enhancement [J]. Computer Engineering and Applications, 2023, 59(4): 18-29. |
[6] | ZHANG Mingxing, ZHANG Xiaoxiong, LIU Shanshan, TIAN Hao, YANG Qinqin. Review of Recommendation Systems Using Knowledge Graph [J]. Computer Engineering and Applications, 2023, 59(4): 30-42. |
[7] | WANG Yiru, SHI Donghui. Ontology Construction of Architectural Intangible Cultural Heritage Knowledge Using CIDOC CRM [J]. Computer Engineering and Applications, 2023, 59(3): 317-326. |
[8] | XIAO Lizhong, ZANG Zhongxing, SONG Saisai. Research on Cascaded Labeling Framework for Relation Extraction with Self-Attention [J]. Computer Engineering and Applications, 2023, 59(3): 77-83. |
[9] | HU Hao, GAO Jing, LIU Zhenyu. Research and Construction of Genetic Knowledge Graph of Milk Yield Traits in Dairy Cows [J]. Computer Engineering and Applications, 2023, 59(2): 299-305. |
[10] | JING Li, YAO Ke. Research on Text Classification Based on Knowledge Graph and Multimodal [J]. Computer Engineering and Applications, 2023, 59(2): 102-109. |
[11] | LIU Zhongbao, WANG Yufei. Multi-Granularity Chinese Text Sentiment Analysis Driven by Knowledge and Data [J]. Computer Engineering and Applications, 2023, 59(15): 177-186. |
[12] | QIU Xiaoping, CHEN Jiong. Construction of Knowledge Graph in Storage Domain Based on Knowledge Context [J]. Computer Engineering and Applications, 2023, 59(14): 94-106. |
[13] | CAO Yukun, JIN Chengkun, TANG Yijia, WEI Ziyue, LI Yunfeng. Word Sense Disambiguation Combining Knowledge Graph and Text Hierarchical [J]. Computer Engineering and Applications, 2023, 59(14): 158-165. |
[14] | HUANG Hexuan, WANG Xiaoyan, GU Zhengwei, LIU Jing, ZANG Yanan, SUN Xin. Research on Construction Technology and Development Status of Medical Knowledge Graph [J]. Computer Engineering and Applications, 2023, 59(13): 33-48. |
[15] | DENG Jianfeng, WANG Tao, CHENG Lianglun. Research on Construction of Event Logic Knowledge Graph of Robot Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(13): 139-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||