Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (13): 110-119.DOI: 10.3778/j.issn.1002-8331.2203-0344

• Pattern Recognition and Artificial Intelligence • Previous Articles     Next Articles

Aspect Level Sentiment Classification Model Based on LaLI and GCN

WANG Ze, KONG Weiwei, HUANG Jiyun, ZHANG Mengna, LI Chi   

  1. 1.School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
    2.Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an 710121, China
    3.School of Humanities and Foreign Languages, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • Online:2023-07-01 Published:2023-07-01

基于LaLI和GCN的方面级情感分类模型

王泽,孔韦韦,黄纪云,张梦娜,李驰   

  1. 1.西安邮电大学 计算机学院,西安 710121
    2.陕西省网络数据分析与智能处理重点实验室,西安 710121
    3.西安邮电大学 人文与外国语学院,西安 710121

Abstract: The word lexical and the distance between aspect-words and context are usually ignored in the aspect-level sentiment classification of graph convolution network(GCN) and recurrent neural network, which fails to make the connection and importance between aspect words and their key sentiment ones stand out. To remedy this situation, this paper provides an aspect-level sentiment classification model(LaLI-GCN) with a mixture of LaLI and GCN. Firstly, used bi-directional long short-term memory to extract semantic information and design a fusion algorithm containing the lexical and location information. Secondly, to design an enhancement algorithm in the base of the data from the fusion algorithm above to form a fusion syntactic dependency tree, and GCN is used to fuse the semantic information and syntactic dependency information. Thirdly, it extracts specific aspect features guided by the mask mechanism, and completes emotion classification through interactive attention capture and interactive context. The model experiments in these three public datasets have proved that lexical and location information coming from combined algorithm plays a role in improving emotion discriminatory and is better to conduct sentiment classification than representative models.

Key words: aspect sentiment classification, word lexical, location information, graph convolution network, syntactic dependency tree

摘要: 图卷积网络(graph convolution network,GCN)和循环神经网络的方面级情感分类方法忽略了单词词性信息和方面词与上下文单词之间的位置信息,且难以突出方面与其关键情感词之间的联系和重要性。针对上述问题,提出了一种基于GCN并融合多方面信息的方面情感分类模型(LaLI-GCN)。使用双向长短期记忆网络提取语义信息,并设计融合算法引入单词的词性与位置信息(lexical and location information,LaLI);结合融合算法的结果用于设计增强算法去生成增强句法依存树,采用GCN融合语义信息和句法依存信息;根据掩码机制提取特定方面特征,利用交互注意力捕捉方面与上下文之间的交互信息完成情感分类。模型在三个公开数据集的实验证明了经过算法融合的词性与位置信息对于提升情感判别的有效性,且相较于当前代表模型有更好的情感分类效果。

关键词: 方面级情感分类, 单词词性, 位置信息, 图卷积网络, 句法依存树