Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (10): 299-305.DOI: 10.3778/j.issn.1002-8331.2201-0431

• Engineering and Applications • Previous Articles     Next Articles

Multi-Task Banded Regression Model for Individual Cancer Survival Analysis

WANG Huiheng, CAI Nian, CHEN Rui, LIU Xuan, LI Jian   

  1. 1.School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
    2.Department of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
  • Online:2023-05-15 Published:2023-05-15

面向癌症个体生存分析的多任务带状回归模型

王慧恒,蔡念,陈睿,刘璇,黎剑   

  1. 1.广东工业大学 信息工程学院,广州 510006
    2.中山大学肿瘤中心 诊断和介入超声科,广州 510060

Abstract: Individual cancer survival analysis is important to explore the survival status of a cancer patient. Most of previous multi-task linear regression methods based on linear transformation cannot reveal the cumulative risk of individual cancer course. A multi-task banded regression model(MTBR) is proposed for the survival analysis of the chronic and long-duration diseases such as cancer. Firstly, banded verification is introduced to design a multi-task regression model combining the regression and the banded transform. The transformation matrix for banded verification is mathematically deduced and verified in terms of validity and well-condition. Then, two specific matrices are presented as the examples of the multi-task banded matrix. Finally, the proposed model is validated by predicting the risk of individual survival analysis on the real-world cancer emergency and survival analysis datasets. The proposed model performs better survival analysis on the METABRIC dataset than the mainstream survival analysis models based on neural network, by the improvement of 0.05 C-index in 95% confidence intervals.

Key words: cancer, individual survival analysis, multi-task regression, banded verification

摘要: 个体癌症生存分析对于探索个人在罹患癌病后生存状态具有重要意义。针对目前多任务线性回归方法依赖于线性转换而不能体现个人癌症病程风险累积的问题,提出了一种多任务带状回归模型,用于拟合以癌症为代表的病性慢、病程长的生存分析。引入带状校验方式建立了回归器和带状转换结合的多任务回归模型,数学推导并验证了带状检验转换矩阵的有效性和良态性。给出了多任务带状矩阵的两个特殊矩阵。在真实的癌症急病和生存分析数据集上验证了提出的模型对个人生存分析风险预测的有效性。在95%置信区间中,所提模型相比于现行主流通用神经网络生存分析模型,在METABRIC数据集中获取的一致性系数提升约0.05。

关键词: 癌症, 个体生存分析, 多任务回归, 带状校验