Improved FCOS Remote Sensing Image Detection Method Based on Distance Constraint
SU Shuzhi, XIE Yuqi
1.School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
2.Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
[1] 杨军,杨婉钰.改进尺度不变特征变换的遥感影像配准[J].测绘科学,2021,46(5):84-94.
YANG J,YANG W Y.Improved SIFT algorithm for remote sensing image registration[J].Science of Surveying and Mapping,2021,46(5):84-94.
[2] 韩松来,王钰婕,王星,等.多尺度PCA-HOG遥感异源图像匹配方法[J].国防科技大学学报,2022,44(1):146-155.
HAN S L,WANG Y J,WANG X,et al.Remote sensing multi-modal image matching algorithm based on multi-scale PCA-HOG[J].Journal of National University of Defense,2022,44(1):146-155.
[3] 胡正平,董淑丽,赵淑欢.多尺度局部区域响应累积的非滑窗快速目标检测方法[J].信号处理,2016,32(1):37-45.
HU Z P,DONG S L,ZHAO S H.Fast object detection algorithm with non-sliding window based on accumulation of multi-scale local response[J].Journal of Signal Processing,2016,32(1):37-45.
[4] 魏驰宇,刘蓉,刘明,等.改进FCOS的复杂场景口罩佩戴检测算法[J/OL].计算机工程与应用(2022-04-17)[2022-05-18].http://kns.cnki.net/kcms/detail/11.2127.TP.20220415.1235.
002.html.
WEI C Y,LIU R,LIU M,et al.Improved algorithm of FCOS for complex scene mask wear detection[J/OL].Computer Engineering and Applications(2022-04-17)[2022-05-18].http://kns.cnki.net/kcms/detail/11.2127.TP.20220415.1235.
002.html.
[5] 刘竞升,伍星,王洪刚,等.改进FCOS的二阶段SAR舰船检测算法[J].计算机工程与应用,2021,57(24):144-151.
LIU J S,WU X,WANG H G,et al.Improved FCOS two-stage SAR ship detection algorithm[J].Computer Engineering and Applications,2021,57(24):144-151.
[6] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28,2015:91-99.
[7] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[8] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//14th European Conference on Computer Vision.Cham:Springer,2016:21-37.
[9] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:2980-2988.
[10] QING Y H,LIU W Y,FENG L Y,et al.Improved YOLO network for free-angle remote sensing target detection[J].Remote Sensing,2021,13(11):2171.
[11] GAO F,HE Y,WANG J,et al.Anchor-free convolutional network with dense attention feature aggregation for ship detection in SAR images[J].Remote Sensing,2020,12(16):2619.
[12] XU L,PANG C,GUO Y,et al.Combinational fusion and global attention of the single-shot method for synthetic aperture radar ship detection[J].Remote Sensing,2021,13(23):4781.
[13] 陈欣,万敏杰,马超,等.采用多尺度特征融合SSD的遥感图像小目标检测[J].光学精密工程,2021,29(11):2672-2682.
CHEN X,WAN M J,MA C,et al.Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J].Optics and Precision Engineering,2021,29(11):2672-2682.
[14] 刘畅,朱卫纲.多尺度与复杂背景条件下的SAR图像船舶检测[J].遥感信息,2021,36(3):50-57.
LIU C,ZHU W G.Ship detection in SAR imagery under multi-scale and complex-background conditions[J].Remote Sensing Information,2021,36(3):50-57.
[15] 张佳欣,王华力.改进YOLOv3的SAR图像舰船目标检测[J].信号处理,2021,37(9):1623-1632.
ZHANG J X,WANG H L.Ship target detection in SAR image based on improved YOLOv3[J].Journal of Signal Processing,2021,37(9):1623-1632.
[16] XU D Q,WU Y Q.MRFF-YOLO:a multi-receptive fields fusion network for remote sensing target detection[J].Remote Sensing,2020,12(19):3118.
[17] 岳冰莹,陈亮,师皓,等.基于改进RetinaNet的SAR图像目标检测方法[J].信号处理,2022,38(1):128-136.
YUE B Y,CHEN L,SHl H,et al.Ship detection in SAR images based on improved RetinaNet[J].Journal of Signal Processing,2022,38(1):128-136.
[18] ZHU M,HU G,ZHOU H,et al.A ship detection method via redesigned FCOS in large-scale SAR images[J].Remote Sensing,2022,14(5):1153.
[19] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:12993-13000.
[20] TIAN Z,SHEN C,CHEN H,et al.FCOS:fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision,2019:9627-9636.
[21] MOHAMMED M A,ABDULKAREEM K H,MOSTAFA S A,et al.Voice pathology detection and classification using convolutional neural network model[J].Applied Sciences,2020,10(11):3723.
[22] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[23] 高宇歌,杨海涛,王晋宇,等.联合知识与CNN的遥感影像目标检测研究综述[J].计算机工程与应用,2021,57(18):65-74.
GAO Y G,YANG H T,WANG J Y,et al.Review of remote sensing image target detection research combining knowledge and CNN[J].Computer Engineering and Applications,2021,57(18):65-74.
[24] JIANG B,LUO R,MAO J,et al.Acquisition of localization confidence for accurate object detection[C]//Proceedings of the 15th European Conference on Computer Vision,2018:784-799.
[25] HENDRYCKS D,GIMPEL K.Gaussian error linear units[J].arXiv:1606.08415,2016.
[26] GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,2011:315-323.
[27] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[28] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//13th European Conference on Computer Vision.Cham:Springer,2014:740-755.
[29] ZHANG S,CHI C,YAO Y,et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9759-9768.
[30] DUAN K,BAI S,XIE L,et al.CenterNet:keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision,2019:6569-6578.
[31] XIAO Z,LIU Q,TANG G,et al.Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J].International Journal of Remote Sensing,2015,36(2):618-644.