ZHAO Jielun, ZHANG Xingzhong, DONG Hongyue. Defect Detection in Transmission Line Based on Scale-Invariant Feature Pyramid Networks[J]. Computer Engineering and Applications, 2022, 58(8): 289-296.
[1] NGUYEN V N,JENSSEN R,ROVERSO D.Automatic autonomous vision-based power line inspection:a review of current status and the potential role of deep learning[J].International Journal of Electrical Power & Energy Systems,2018,99:107-120.
[2] 邹栋.输电线路中关键部件图像识别及异常检测方法研究[D].北京:华北电力大学,2017.
ZOU D.Research on recognition of key components and detection of anomaly in transmission line[D].Beijing:North China Electric Power University,2017.
[3] ANTWI-BEKOE E,ZHAN Q,XIE X,et al.Insulator recognition and fault detection using deep learning approach[J].Journal of Physics Conference Series,2020,1454:012011.
[4] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015:91-99.
[5] CHEN S,SU C,KUANG Z,et al.Real-time detection of UAV detection image of power line insulator bursting based on YOLOV3[J].Journal of Physics Conference Series,2020,1544:012117.
[6] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[7] 赵振兵,崔雅萍,戚银城,等.基于改进的R-FCN航拍巡线图像中的绝缘子检测方法[J].计算机科学,2019,46(3):165-169.
ZHAO Z B,CUI Y P,QI Y C,et al.Detection method of insulator in aerial inspection image based on modified R-FCN[J].Computer Science,2019,46(3):165-169.
[8] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems,2016:379-387.
[9] HAO J,WULIN H,JING C,et al.Detection of bird nests on power line patrol using single shot detector[C]//2019 Chinese Automation Congress(CAC),2020.
[10] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[11] 王纪武,罗海保,鱼鹏飞,等.基于Faster R-CNN的多尺度高压塔鸟巢检测[J].北京交通大学学报,2019,43(5):37-43.
WANG J W,LUO H B,YU P F,et al.Bird’s nest detection in multi-scale of high-voltage tower based on Faster R-CNN[J].Journal of Beijing Jiaotong University,2019,43(5):37-43.
[12] 师飘,张超,郑祥明.基于深度学习的高压杆塔异物检测[J].重庆科技学院学报(自然科学版),2020,22(2):83-87.
SHI P,ZHANG C,ZHENG X M.Foreign object detection in high-voltage towers based on deep learning[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2020,22(2):83-87.
[13] LI Z,WANG W,LI T,et al.Defect diagnosis technology of typical components on transmission line based on fully convolutional network[J].Journal of Physics:Conference Series,2020,1453:012108.
[14] ZHAO G W,WANG Q,ZHANG J,et al.Lightweight neural network for component recognition and fault detection of large-scale transmission line[J].IOP Conference Series:Materials Science and Engineering,2020,768(7):072070.
[15] CHEN Y,ZHANG Z,CAO Y,et al.RepPoints V2:verification meets regression for object detection[J].arXiv:2007.08508,2020.
[16] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[17] WANG X,ZHANG S,YU Z,et al.Scale-equalizing pyramid convolution for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:13359-13368.
[18] WANG Q,WU B,ZHU P,et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11534-11542.
[19] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV),2016.
[20] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988.
[21] ZHOU X,WANG D,KR?HENBüHL P.Objects as points[J].arXiv:1904.07850,2019.
[22] ZHOU X,ZHUO J,KRAHENBUHL P.Bottom-up object detection by grouping extreme and center points[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:850-859.
[23] YANG Z,LIU S,HU H,et al.Reppoints:point set representation for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2019:9657-9666.
[24] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[25] TIAN Z,SHEN C,CHEN H,et al.FCOS:fully convolutional one-stage object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2019:9627-9636.
[26] LAW H,DENG J.Cornernet:detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:734-750.
[27] ZHANG S,CHI C,YAO Y,et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9759-9768.
[28] KONG T,SUN F,LIU H,et al.FoveaBox:beyound anchor-based object detection[J].IEEE Transactions on Image Processing,2020,29:7389-7398.
[29] ZHANG X,WAN F,LIU C,et al.Freeanchor:learning to match anchors for visual object detection[C]//Advances in Neural Information Processing Systems,2019:147-155.
[30] PANG J,CHEN K,SHI J,et al.Libra R-CNN:towards balanced learning for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:821-830.
[31] ZHU C,HE Y,SAVVIDES M.Feature selective anchor-free module for single-shot object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:840-849.
[32] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition,2016.
[33] ZHU X,HU H,LIN S,et al.Deformable convnets v2:more deformable,better results[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:9308-9316.