SHU Yali, ZHANG Guowei, WANG Bo, XU Xiaokang. Field Weed Identification Method Based on Deep Connection Attention Mechanism[J]. Computer Engineering and Applications, 2022, 58(6): 271-277.
[1] 倪坤晓,何安华.中国粮食供需形势分析[J].世界农业,2021(2):10-18.
NI K X,HE A H.Analysis of China’s food supply and demand situation[J].World Agriculture,2021(2):10-18.
[2] 王敬贤.基于卷积神经网络和迁移学习的农作物病害和杂草图像识别研究[D].合肥:中国科学技术大学,2019.
WANG J X.Research on image identification of crop disease and weed based on CNN and transfer learning[D].Hefei:University of Science and Technology of China,2019.
[3] 王鹏飞.基于深度学习的玉米田间杂草识别技术及应用[D].山东泰安:山东农业大学,2019.
WANG P F.Recognition technology and application of weed corn field based on deep learning[D].Tai’an:Shandong Agricultural University,2019.
[4] LEE J H,KIM Y J,KIM Y W,et al.Spotting malignancies from gastric endoscopic images using deep learning[J].Surgical Endoscopy,2019,89(4):806-815.
[5] GóMEZ-RíOS A,TABIK S,LUENGO J,et al.Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation[J].Expert Systems with Applications,2019,43(2):118-120.
[6] CLáUDIA B,ANA M,ANTóNIO S.Electrocardiogram beat-classification based on a resnet network[J].Studies in Health Technology and Informatics,2019,30(6):264-265.
[7] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition.Las Vegas:IEEE Computer Society,2016.
[8] 左羽,徐文博,吴恋.植物识别融合式双特征卷积神经网络[J].计算机工程与设计,2021,42(6):1706-1712.
ZUO Y,XU W B,WU L.Hybrid dual-feature convolutional neural network for plant recognition[J].Computer Engineering and Design,2021,42(6):1706-1712.
[9] 陈加敏,徐杨.注意力金字塔卷积残差网络的表情识别[J/OL].计算机工程与应用:1-11[2021-08-05].http://kns.cnki.net/kcms/detail/11.2127.TP.20210702.1749.004.html.
CHEN J M,XU Y.Expression recognition based on convolutional residual network of attention pyramid[J/OL].Computer Engineering and Applications:1-11[2021-08-05].http://kns.cnki.net/kcms/detail/11.2127.TP.20210702.1749.
004.html.
[10] 曾伟辉,李淼,李增,等.基于高阶残差和参数共享反馈卷积神经网络的农作物病害识别[J].电子学报,2019,47(9):1979-1986.
ZENG W H,LI M,LI Z,et al.High-order residuals and parameter sharing feedback convolutional neural network for crop disease recognition[J].Acta Electronica Sinca,2019,47(9):1979-1986.
[11] 张宸嘉,朱磊,俞璐.卷积神经网络中的注意力机制综述[J].计算机工程与应用,2021,57(20):64-72.
ZHANG C J,ZHU L,YU L.Review of attention mechanisms in convolutional neural networks[J].Computer Engineering and Applications,2021,57(20):64-72.
[12] 段萌,王功鹏,牛常勇.基于卷积神经网络的小样本图像识别方法[J].计算机工程与设计,2018,39(1):224-229.
DUAN M,WANG G P,NIU C Y.Method of small sample size image recognition based on convolutional neural network[J].Computer Engineering and Design,2018,39(1):224-229.
[13] 龙满生,欧阳春娟,刘欢,等.基于卷积神经网络与迁移学习的油茶病害识图像识别[J].农业工程学报,2018,34(18):194-201.
LONG M S,OUYANG C J,LIU H,et al.Image recognition of camellia oleifera diseases based on convolutional neural network and transfer learning[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(18):194-201.
[14] 王璨,武新慧,李志伟.基于卷积神经网络提取多尺度分层特征识别玉米杂草[J].农业工程学报,2018,34(5):144-151.
WANG C,WU X H,LI Z W.Recognition of maize and weed based on multi-scale hierarchical features extracted by convolutional neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(5):144-151.
[15] 裴晓芳,张杨.基于改进残差网络的花卉图像分类算法[J].电子器件,2020,43(3):698-704.
PEI X F,ZHANG Y.Flower image classification algorithm based on improved residual network[J].Chinese Journal of Electron Devices,2020,43(3):698-704.
[16] HE T,ZHANG Z,ZHANG H,et al.Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,CA,US:IEEE,2019:558-567.
[17] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conferenceon Computer Vision and Pattern Recognition(CVPR),Seattle,WA,USA,2020:11531-11539.
[18] HU J,SHEN L,ALBANIE S,et al.Squeeze and excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[19] MA X,GUO J D,TANG S H,et al.DCANet:learningconnected attentions for convolutional neural networks[J].arXiv:2007.05099,2020.
[20] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[J].arXiv:1807.06521,2018.