Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (4): 206-211.DOI: 10.3778/j.issn.1002-8331.2009-0146

• Pattern Recognition and Artificial Intelligence • Previous Articles     Next Articles

Cervical Cell Fine-Grained Image Classification Method

GOU Mingliang, QIN Mingwei, YAO Yuancheng   

  1. 1.School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
    2.Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang, Sichuan 621010, China
  • Online:2022-02-15 Published:2022-02-15

宫颈细胞细粒度分类方法

苟明亮,秦明伟,姚远程   

  1. 1.西南科技大学 信息工程学院,四川 绵阳 621010
    2.特殊环境机器人技术四川省重点实验室,四川 绵阳 621010

Abstract: Aiming at the high similarity of cervical cell images and the low accuracy of its fine-grained classification, a DRMNet(dense reset module net) algorithm based on dual-path network and local discriminant loss function is proposed. In the feature extraction stage, the residual structure is taken as the main body, and the dense connection path is added. Combining the advantages of the two, the network has high reuse rate and low feature redundancy, while maintaining the ability to explore new features. In the classification stage, the subtle features in the image are mined by improving the loss function, and the local discriminant loss function is used to make the network look for discriminative local area features. The seven classification accuracy rate of this algorithm on the Herlev data set reaches 98.9%, which is a certain improvement compared with other algorithms, which verifies the effectiveness of this algorithm.

Key words: cervical cells, fine-grained, local discriminant loss function, dense connection

摘要: 针对宫颈细胞图像的相似性极高,其细粒度分类存在准确率低的问题,提出了一种基于双路径网络与局部判别损失函数的DRMNet(dense reset module net)算法。该算法在特征提取阶段以残差结构为主体,加入密集连接路径,结合两者优点,使网络对特征有着高复用率、低特征冗余度的同时,保持探索新特征的能力。在分类阶段,通过改进损失函数来挖掘图像中的细微特征,利用局部判别损失函数使网络寻找具有判别力的局部区域特征。该算法在Herlev数据集上的七分类准确率达到了98.9%,对比其他算法有一定的提升,从而验证了该算法的有效性。

关键词: 宫颈细胞, 细粒度, 局部判别损失函数, 密集连接