MAO Yanchun, XU Jianqiu. Accelerating Visualization Update of Moving Objects in GPU Environment[J]. Computer Engineering and Applications, 2022, 58(23): 261-267.
[1] CUZZOCREA A.Advanced query answering techniques over big mobile data[C]//2016 17th IEEE International Conference on Mobile Data Management(MDM),Porto,Portugal,2016:4-7.
[2] GUETING R H,BEHR R,XU R.Efficient k-nearest neighbor search on moving object trajectories[J].The VLDB Journal,2010,19(5):687-714.
[3] GATTERBAUER W.Databases will visualize queries too[J].Proceedings of the VLDB Endowment,2011,4:1498-1501.
[4] ORTAL P,KATO S,EDAHIRO M.Real-time visualization of moving objects[C]//2015 IEEE 3rd International Conference on Cyber-Physical Systems,Hong Kong,China,2015:60-65.
[5] WANG Z,LU M,YUAN X,et al.Visual traffic jam analysis based on trajectory data[J].IEEE Transactions on Visuali-zation and Computer Graphics,2013,19(12):2159-2168.
[6] GüTING R H,BEHR T,DüNTGEN C.SECONDO:a platform for moving objects database research and for publishing and integrating research implementations[J].IEEE Data Eng,2010,33(2):56-63.
[7] XU J,GüTING R H.Infrastructures for research on multimodal moving objects[C]//IEEE 12th International Conference on Mobile Data Management,Lulea,Sweden,2011:329-332.
[8] NVIDIA Corporation.High performance computing[EB/OL].[2021-04-26].https://developer.nvidia.cn/zh-cn/hpc.
[9] 李涛,董前琨,张帅,等.基于线程池的GPU任务并行计算模式研究[J].计算机学报,2018,41(10):2175-2192.
LI T,DONG Q K,ZHANG S,et al.GPU task parallel computing paradigm based on thread pool model[J].Chinese Journal of Computers,2018,41(10):2175-2192.
[10] STUART J A,CHEN C K,MA K L,et al.Multi-GPU volume rendering using MapReduce[C]//Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing.New York:ACM,2010:841-848.
[11] 梅鸿辉,陈海东,肇昕,等.一种全球尺度三维大气数据可视化系统[J].软件学报,2016,27(5):1140-1150.
MEI H H,CHEN H D,ZHAO X,et al.Visualization system of 3D global scale meteorological data[J].Journal of Software,2016,27(5):1140-1150.
[12] GOWANLOCK M,CASANOVA H.Indexing of spatiotemporal trajectories for efficient distance threshold similarity searches on the GPU[C]//2015 IEEE International Parallel and Distributed Processing Symposium,Hyderabad,India,2015:387-396.
[13] LUO L,WONG M.Parallel Implementation of R-trees on the GPU[C]//17th Asia and South Pacific Design Automation Conference,2012:352-358.
[14] PRASAD S K,MCDERMOTT M,HE X,et al.GPU-based parallel R-tree construction and querying[C]//2015 IEEE International Parallel and Distributed Processing Symposium Workshop,Hyderabad,India,2015:618-627.
[15] YOU S,ZHANG J,GRUENWALD L.Parallel spatial query processing on GPUs using R-trees[C]//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data.New York:ACM,2013:23-31.
[16] COOK S.CUDA programming:a developer’s guide to parallel computing with GPUs[M].San Francisco:Morgan Kaufmann,2012.
[17] PIORKOWSKI M,SARAFIJANOVIC?DJUKIC N,GROSSGLAUSER M.CRAWDAD mobility dataset[DB/OL].[2009?02?24].https://crawdad.org/epfl/mobility/20090224/index.html.
[18] BRINKHOFF T.Generating traffic data[J].IEEE Data Engineering Bulletin,2003,26(2):19-25.