Marginal Manifold Embedding for Feature Extraction
GONG Sicong, XU Jie, WAN Minghua
1.Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China
2.Faculty?of?Information?Engineering, Nanjing Audit University, Nanjing 211815, China
[1] YI Y G,WANG J Z,ZHOU W,et al.Joint graph optimization and projection learning for dimensionality reduction[J].Pattern Recognition,2019,92:258-273.
[2] JIN C,JIN S W,QIN L N.Attribute selection method based on a hybrid BPNN and PSO algorithm[J].Applied Soft Computing,2012,12(8):2147-2155.
[3] NIE R C,ZHOU D M,HE M,et al.Facial feature extraction using frequency map series in PCNN[J].Journal of Sensors,2016:1-9.
[4] YU C B,NIE R C,ZHOU D M.A regularized locality projection-based sparsity discriminant analysis for face recognition[J].International Journal of Pattern Recognition and Artificial Intelligence,2018,32(5):1856006.
[5] ABUDARHAM N,SHKILLER L,YOVEL G.Critical features for face recognition[J].Cognition,2019,182:73-83.
[6] GUI J,JIA W,ZHU L,et al.Locality preserving discriminant projections for face and palmprint recognition[J].Neurocomputing,2010,73(13):2696-2707.
[7] CHEN B,ZHANG H,ZHANG X F,et al.Max-margin discriminant projection via data augmentation[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(7):1964-1976.
[8] YI Y G,WANG J Z,ZHOU W,et al.Non-negative matrix factorization with locality constrained adaptive graph[J].IEEE Transactions on Circuits and Systems for Video,2019,30(2):427-441.
[9] JIN C,JIN S W.Automatic image annotation using feature selection based on improving quantum particle swarm optimization[J].Signal Processing,2015,109:172-181.
[10] JING X Y,LAN C,ZHANG D,et al.Face feature extraction and recognition based on discrimint subclass-center manifold preserving projection[J].Pattern Recognition Letters,2012,33(6):709-717.
[11] YI Y G,QIAO S L,ZHOU W X,et al.Adaptive multiple graph regularized semi-supervised extreme learning machine[J].Soft Computing,2018,22(11):3545-3562.
[12] TURK M,PENTLAND A.Face recognition using eigenfaces[C]//Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1991:586-591.
[13] TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Congitive Neuroscience,1991,3(1):71-86.
[14] WEI L,ZHOU R G,YIN J,et al.Latent graph-regularized inductive robust principal componentanalysis[J].Knowledge-Based Systems,2019,177:68-81.
[15] BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J].IEEE Transcations on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
[16] QU D P,TAN K,DU Q.Feature extraction for hyperspectral images based on semi-supervised local discrimi-nant analysis[J].Remote Sensing,2019,11(7):654-671.
[17] CHOI H,CHOI S.Robust kernel isomap[J].Pattern Recognition,2007,40(3):853-862.
[18] ZHANG Y,ZHANG Z,JIE Q,et al.Semi-supervised local multi-manifold Isomap by linear embedding for feature extraction[J].Pattern Recognition,2018,76:662-678.
[19] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[20] SHI G Y,HUANG H,LIU J M,et al.Spatial-spectral multiple manifold discriminant analysis for dimensionality reduction of hyperspectral imagery[J].Remote Sensing,2019,11(20):2414-2437.
[21] BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
[22] SHI G Y,HUANG H,WANG L H.Unsupervised dimensionality reduction for hyperspectral imagery via local geometric structure feature learning[J].IEEE Geoscience and Remote Sensing Letters,2020,17(8):1425-1429.
[23] HE X F,CAI D,YAN S C,et al.Neighborhood preserving embedding[C]//Tench IEEE International Conference on Computer Vision,2005:1208-1213.
[24] CHEN H T,WU J P,JIANG B,et al.A modified neighborhood preserving embedding-based incipient fault detection with applications to small-scale cyber-physical systems[J].ISA Transactions,2020,104:175-183.
[25] HE X F,YAN S C,HU Y X,et al.Face recognition using Laplacianfaces[J].IEEE Transcations on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
[26] GAO Y L,ZHONG S X,HU K L,et al.Robust locality preserving projections using angle-based adaptive weight method[J].IET Computer Vision,2020,14(8):605-613.
[27] 薛啸宇,马小虎.基于双邻接图正交近邻保持投影的人脸识别算法[J].计算机科学,2017,44(8):31-35.
XUE X Y,MA X H.Double adjacency graphs based orthogonal neighborhood preserving projections for face recognition[J].Computer Science,2017,44(8):31-35.
[28] YAN S C,XU D,ZHANG B Y,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transcations on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
[29] HUANG Z Y,ZHU H Y,ZHOU J T,et al.Multiple marginal fisher analysis[J].IEEE Transactions on Industrial Electronics,2019,66(12):9798-9807.
[30] CAI D,HE X F,ZHOU K,et al.Locality sensitive discriminant analysis[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence,2007:708-713.
[31] WU F,JING X Y,HUANG Q H.Uncorrelated locality-sensitive multi-view discriminant analysis[J].National Academy Science Letters,2020,43(4):327-331.
[32] YANG Z J,HUANG P,WAN M H,et al.Discriminant maximum margin projections for face recognition[J].Multimedia Tools and Applications,2019,78(17):23847-23865.
[33] YI Y G,ZHANG B X,KONG J,et al.An improved locality sensitive discriminant analysis approach for feature extraction[J].Multimedia Tools and Applications,2015,74(1):85-104.
[34] WEI Y K,JIN C.Locality sensitive discriminant projection for feature extraction and face recognition[J].Journal of Electronic Imaging,2019,28(4):1-13.