Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (22): 41-53.DOI: 10.3778/j.issn.1002-8331.2203-0233
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Hualing, LIU Yaxin, XU Junyi, CHEN Shanghui, QIAO Liang
Online:
2022-11-15
Published:
2022-11-15
刘华玲,刘雅欣,许珺怡,陈尚辉,乔梁
LIU Hualing, LIU Yaxin, XU Junyi, CHEN Shanghui, QIAO Liang. Research Progress in Application of Graph Anomaly Detection in Financial Anti-Fraud[J]. Computer Engineering and Applications, 2022, 58(22): 41-53.
刘华玲, 刘雅欣, 许珺怡, 陈尚辉, 乔梁. 图异常检测在金融反欺诈中的应用研究进展[J]. 计算机工程与应用, 2022, 58(22): 41-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2203-0233
[1] 刘瑜晓,杨华.以金融科技赋能,构建信用卡智能风控体系[J].中国信用卡,2021(5):24-29. LIU Y X,YANG H.Build credit card intelligent risk control system with financial technology empowerment[J].China Credit Card,2021(5):24-29. [2] 王乾.智能风控在商业银行普惠金融中的应用[J].银行家,2021(5):122-124. WANG Q.Application of intelligent risk control of inclusive finance in commercial banks[J].The Chinese Banker,2021(5):122-124. [3] 刘殿中.动态金融复杂数据的欺诈检测[D].青岛:青岛大学,2020. LIU D Z,Fraud detection for dynamic financial complex data[D].Qingdao:Qingdao University,2020. [4] HOOGS B,KIEHL T,LACOMB C,et al.A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud[J].Intelligent Systems in Accounting,Finance & Management,2007,15(1/2):41-56. [5] YUE D M,WU X D,WANG Y F,et al.A review of data mining-based financial fraud detection research[C]//2007 International Conference on Wireless Communications,Networking and Mobile Computing,Shanghai,Sep 21-25,2007.Piscataway:IEEE,2007:5519-5522. [6] VELAMPALLI S,EBERLE W.Novel graph based anomaly detection using background knowledge[C]//30th International Flairs Conference,Florida,May 22-24,2017.Menlo Park:AAAI,2017:538-543. [7] HAWKINS D M.Identification of outliers[M].London:Chapman and Hall,1980:100-110. [8] NOBLE C C,COOK D J.Graph-based anomaly detection[C]//9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Washington,Aug 24-27,2003.New York:ACM,2003:631-636. [9] WANG J D,KAN H T,MENG F,et al.Fake review detection based on multiple feature fusion and rolling collaborative training[J].IEEE Access,2020,8:182625-182639. [10] MARCHAL S,SZYLLER S.Detecting organized eCommerce fraud using scalable categorical clustering[C]//35th Annual Computer Security Applications Conference,Puerto Rico,Dec 9-13,2019.New York:ACM,2019:215-228. [11] AKOGLU L,TONG H,KOUTRA D.Graph-based anomaly detection and description:a survey[J].Data Mining & Knowledge Discovery,2015,29(3):626-688. [12] GUPTA M,GAO J,AGGARWAL C,et al.Outlier detection for temporal data[J].Synthesis Lectures on Data Mining and Knowledge Discovery,2014,5(1):1-129. [13] RANSHOUS S,SHEN S,KOUTRA D,et al.Anomaly detection in dynamic networks:a survey[J].Wiley Interdisciplinary Reviews:Computational Statistics,2015,7(3):223-247. [14] SAVAGE D,ZHANG X Z,YU X G,et al.Anomaly detection in online social networks[J].Social Networks,2014,39:62-70. [15] 李忠,靳小龙,庄传志,等.面向图的异常检测研究综述[J].软件学报,2021,32(1):167-193. LI Z,JIN X L,ZHUANG C Z,et al.Overview on graph based anomaly detection[J].Journal of Software,2021,32(1):167-193. [16] 苏江军,董一鸿,颜铭江,等.面向复杂网络的异常检测研究进展[J].控制与决策,2021,36(6):1293-1310. SU J J,DONG Y H,YAN M J,et al.Research progress of anomaly detection for complex networks[J].Control and Decision,2021,36(6):1293-1310. [17] 陈波冯,李靖东,卢兴见,等.基于深度学习的图异常检测技术综述[J].计算机研究与发展,2021,58(7):1436-1455. CHEN B F,LI J D,LU X J,et al.Survey of deep learning based graph anomaly detection methods[J].Journal of Computer Research and Development,2021,58(7):1436-1455. [18] PRASANTA G,BHATTACHARYYA D K,BORAH B,et al.A survey of outlier detection methods in network anomaly identification[J].Computer Journal,2011(4):570-588. [19] YU R,QIN H D,WEN Z,et al.A survey on social media anomaly detection[J].ACM SIGKDD Explorations Newsletter,2016,18(1):1-14. [20] ANAND K,KUMAR J,ANAND K.Anomaly detection in online social network:a survey[C]//2017 International Conference on Inventive Communication and Computational Technologies,Coimbatore,Mar 10-11,2017.Piscataway:IEEE,2017:456-459. [21] PAGE L,BRIN S,MOTWANI R,et al.The PageRank citation ranking:bringing order to the web[Z].Stanford Digital Libraries Working Paper,1998:1-17. [22] KLEINBERG J M.Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,46(5):604-632. [23] FREEMAN L C.A set of measures of centrality based on betweenness[J].Sociometry,1977,40(1):35-41. [24] BONACICH P,LLOYD P.Eigenvector-like measures of centrality for asymmetric relations[J].Social Networks,2001,23(3):191-201. [25] DRE?EWSKI R,SEPIELAK J,FILIPKOWSKI W.The application of social network analysis algorithms in a system supporting money laundering detection[J].Information Sciences,2015,295:18-32. [26] MCCARTY C.EgoNet:personal network software[D].Florida:University of Florida,2003. [27] AKOGLU L,MCGLOHON M,FALOUTSOS C.Oddball:spotting anomalies in weighted graphs[C]//2010 Pacific-Asia Conference on Knowledge Discovery and Data Mining,Hyderabad,Jun 21-24,2010.Berlin:Springer,2010:410-421. [28] WANG Y,WANG L M,YANG J.EgoNet based anomaly detection in E-bank transaction networks[C]//2019 IOP Conference Series:Materials Science and Engineering,Shanghai,Apr 26-28,2019.Bristol:IOP Publishing,2020:012038. [29] WANG K,CHEN D.Graph structure based anomaly behavior detection[C]//2nd International Conference on Computer Engineering,Information Science & Application Technology,Beijing,Sep 8-11,2017.Amsterdam:Atlantis Press,2016:531-538. [30] COLLADON A F,REMONDI E.Using social network analysis to prevent money laundering[J].Expert Systems with Applications,2017,67:49-58. [31] MAHOOTIHA M,GOLPAYEGANI A H,SADEGHIAN B.Designing a new method for detecting money laundering based on social network analysis[C]//2021 26th International Computer Conference,Tehran,Mar 3-4,2021.Piscataway:IEEE,2021:1-7. [32] ZHOU Y D,WANG X M,ZHANG J J,et al.Analyzing and detecting money-laundering accounts in online social networks[J].IEEE Network,2017,32(3):115-121. [33] SAVAGE D,WANG Q M,CHOU P,et al.Detection of money laundering groups using supervised learning in networks[J].arXiv:1608.00708,2016. [34] SHAIKH A K,AL-SHAMLI M,NAZIR A.Designing a relational model to identify relationships between suspicious customers in anti-money laundering(AML) using social network analysis(SNA)[J].Journal of Big Data,2021,8(1):1-22. [35] LIU J,BIER E,WILSON A,et al.Graph analysis for detecting fraud,waste,and abuse in healthcare data[J].AI Magazine,2016,37(2):33-46. [36] PINHEIRO,CARLOS A R.Highlighting unusual behavior in insurance based on social network analysis[C]//SAS Global Forum 2011,Las Vegas,Apr 4-7,2011.Cary:SAS Institute Inc,2011:1-9. [37] MOLLOY I,CHARI S,FINKLER U,et al.Graph analy- tics for real-time scoring of cross-channel transactional fraud[C]//20th International Conference on Financial Cryptography and Data Security,Christ Church,Feb 22-26,2016.Berlin:Springer,2016:22-40. [38] HAVELIWALA T H.Topic-sensitive PageRank:a context-sensitive ranking algorithm for web search[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(4):784-796. [39] VAN VLASSELAER V,ELIASSI-RAD T,AKOGLU L,et al.GOTCHA! Network-based fraud detection for social security fraud[J].Management Science,2017,63(9):3090-3110. [40] HE X N,MING G,KAN M Y,et al.BiRank:towards ranking on bipartite graphs[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):57-71. [41] óSKARSDóTTIR M,AHMED W,ANTONIO K,et al.Social network analytics for supervised fraud detection in insurance[J].Risk Analysis,2021,42(4):1-21. [42] BERSHTEIN L S,TSELYKH A A.A clique-based method for mining fuzzy graph patterns in anti-money laundering systems[C]//2013 International Conference on Security of Information & Networks,Aksaray,Nov 26-28,2013.New York:ACM,2013:384-387. [43] 祁志卫,王笳辉,岳昆,等.图嵌入方法与应用:研究综述[J].电子学报,2020,48(4):808-818. QI Z W,WANG J H,YUE K,et al.Methods and applications of graph embedding:a survey[J].Acta Electonica Sinica,2020,48(4):808-818. [44] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326. [45] BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396. [46] PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online learning of social representations[C]//20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,New York,Aug 24-27,2014.New York:ACM,2014:701-710. [47] GROVER A,LESKOVEC J.Node2vec:scalable feature learning for networks[C]//22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,Aug 13-17,2016.New York:ACM,2016:855-864. [48] TANG J,QU M,WANG M Z,et al.LINE:large-scale information network embedding[C]//24th International Conference on World Wide Web,Florence,May 18-22,2015.New York:ACM,2015:1067-1077. [49] ZHOU H J,SUN G,FU S,et al.Internet financial fraud detection based on a distributed big data approach with Node2vec[J].IEEE Access,2021,9:43378-43386. [50] VAN BELLE R,MITROVI? S,DE WEERDT J.Representation learning in graphs for credit card fraud detection[C]//Workshop on Mining Data for Financial Applications,Würzburg,Sep 16,2019.Cham:Springer,2019:32-46. [51] HAMILTON W L,YING Z T,LESKOVEC J.Inductive representation learning on large graphs[C]//31st International Conference on Neural Information Processing Systems,Long Beach,Dec 4-9,2017.New York:Curran Associates,2017:1025-1035. [52] SHI M,TANG Y F,ZHU X Q,et al.Multi-class imbalanced graph convolutional network learning[C]//29th International Joint Conference on Artificial Intelligence,Yokohama,Jul 11-17,2020.San Francisco:Morgan Kaufmann,2021:2879-2885. [53] LIU Y,AO X,QIN Z D,et al.Pick and choose:a GNN-based imbalanced learning approach for fraud detection[C]//Web Conference 2021,Ljubljana Slovenia,Apr 19-23,2021.New York:ACM,2021:3168-3177. [54] BANDYOPADHYAY S,LOKESH N,MURTY M N.Outlier aware network embedding for attributed networks[C]//33rd AAAI Conference on Artificial Intelligence,Honolulu,Jan 27-Feb 1,2019.Palo Alto:AAAI,2019:12-19. [55] BANDYOPADHYAY S,VIVEK S V,MURTY M N.Outlier resistant unsupervised deep architectures for attributed network embedding[C]//13th ACM International Conference on Web Search and Data Mining,Houston,Feb 3-7,2020.New York:ACM,2020:25-33. [56] DING K,LI J D,BHANUSHALI R,et al.Deep anomaly detection on attributed networks[C]//2019 SIAM International Conference on Data Mining,Calgary,May 2-4,2019.Philadelphia:SIAM,2019:594-602. [57] SUN J M,QU H,CHAKRABARTI D,et al.Neighborhood formation and anomaly detection in bipartite graphs[C]//5th IEEE International Conference on Data Mining,Houston,Nov 27-30,2005.Piscataway:IEEE,2005:8. [58] XU X W,Yuruk N,FENG Z D,et al.SCAN:a structural clustering algorithm for networks[C]//13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Jose,Aug 12-15,2007.New York:ACM,2007:824-833. [59] AMBAI M,UTAMA N P,YOSHIDA Y.Dimensionality reduction for histogram features based on supervised non-negative matrix factorization[J].IEICE Transactions on Information and Systems,2011,94(10):1870-1879. [60] NIKULIN V,HUANG T H.Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates[C]//2012 ICML Workshop on Unsupervised and Transfer Learning,Edinburgh,Jun 26-Jul 1,2012.Cambridge:MIT Press,2012:181-194. [61] KUANG D,DING C,PARK H.Symmetric nonnegative matrix factorization for graph clustering[C]//2012 SIAM International Conference on Data Mining,Anaheim,Apr 26-28,2012.Philadelphia:SIAM,2012:106-117. [62] SHANG F H,JIAO L C,WANG F.Graph dual regularization non-negative matrix factorization for co-clustering[J].Pattern Recognition,2012,45(6):2237-2250. [63] TONG H H,LIN C Y.Non-negative residual matrix factorization with application to graph anomaly detection[C]//2011 SIAM International Conference on Data Mining,Phoenix,Apr 28-30,2011.Philadelphia:SIAM,2011:143-153. [64] JIANG M,CUI P,BEUTEL A,et al.Inferring lockstep behavior from connectivity pattern in large graphs[J].Knowledge and Information Systems,2016,48(2):399-428. [65] CHARIKAR M.Greedy approximation algorithms for finding dense components in a graph[C]//2000 International Workshop on Approximation Algorithms for Combinatorial Optimization,Saarbrücken,Sep 5-8,2000.Berlin:Springer,2000:84-95. [66] HOOI B,SONG H A,BEUTEL A,et al.Fraudar:bounding graph fraud in the face of camouflage[C]//22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,Aug 13-17,2016.New York:ACM,2016:895-904. [67] REN Y X,ZHU H,ZHANG J W,et al.EnsemFDet:an ensemble approach to fraud detection based on bipartite graph[C]//2021 IEEE 37th International Conference on Data Engineering,Chania,Apr 19-22,2021.Piscataway:IEEE,2021:2039-2044. [68] JIANG M,BEUTEL A,CUI P,et al.A general suspiciousness metric for dense blocks in multimodal data[C]//2015 IEEE International Conference on Data Mining,Atlantic City,Nov 14-17,2015.Piscataway:IEEE,2015:781-786. [69] SHIN K,HOOI B,FALOUTSOS C.M-Zoom:fast dense-block detection in tensors with quality guarantees[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases,Riva del Garda,Sep 19-23,2016.Cham:Springer,2016:264-280. [70] SHIN K,HOOI B,KIM J,et al.D-Cube:dense-block detection in terabyte-scale tensors[C]//10th ACM International Conference on Web Search and Data Mining,Cambridge,Feb 6-10,2017.New York:ACM,2017:681-689. [71] JONES K S.A statistical interpretation of term specificity and its application in retrieval[J].Journal of Documentation,1972,28(1):11-21. [72] WANG H B,ZHOU C,WU J,et al.Deep structure learning for fraud detection[C]//2018 IEEE International Conference on Data Mining,Rio de Janeiro,Jul 8-13,2018.Piscataway:IEEE,2018:567-576. [73] ZHENG M Y,ZHOU C,WU J,et al.FraudNE:a joint embedding approach for fraud detection[C]//2018 International Joint Conference on Neural Networks,Rio de Janeiro,Jul 8-13,2018.Piscataway:IEEE,2018:1-8. [74] WEST J,BHATTACHARYA M.Intelligent financial fraud detection:a comprehensive review[J].Computers & Security,2016,57:47-66. [75] NETTLETON D F.A synthetic data generator for online social network graphs[J].Social Network Analysis and Mining,2016,6(1):1-33. [76] GOIX N.How to evaluate the quality of unsupervised anomaly detection algorithms?[J].arXiv:1607.01152,2016. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||