Research on Method of Multi-density Self-Adaptive Determination of DBSCAN Algorithm Parameters
WAN Jia, HU Dasha, JIANG Yuming
1.College of Computer Science, Sichuan University, Chengdu 610065, China
2.Big Data Analysis and Fusion Application Technology Engineering Laboratory of Sichuan Province, Chengdu 610065, China
WAN Jia, HU Dasha, JIANG Yuming. Research on Method of Multi-density Self-Adaptive Determination of DBSCAN Algorithm Parameters[J]. Computer Engineering and Applications, 2022, 58(2): 78-85.
[1] HAN Jiawei,KAMBER M.数据挖掘概念与技术[M].北京:机械工业出版社,2012.
HAN Jiawei,KAMBER M.Data mining:concepts and techniques[M].Beijing:China Machine Press,2012.
[2] ZHAO W L,DENG C H,NGO C W.k-means:a revisit[J].Neurocomputing,2018,291:195-206.
[3] B?CKLUND H,HEDBLOM A,NEIJMAN N.A density-based spatial clustering of application with noise[J].Data Mining TNM033,2011:11-30.
[4] 周董,刘鹏.VDBSCAN:变密度聚类算法[J].计算机工程与应用,2009,45(11):137-141.
ZHOU D,LIU P.VDBSCAN:varied density based clustering algorithm[J].Computer Engineering and Applications,2009,45(11):137-141.
[5] LAI W,ZHOU M,HU F,et al.A new DBSCAN parameters determination method based on improved MVO[J].IEEE Access,2019,7:104085-104095.
[6] KIM J H,CHOI J H,YOO K H,et al.AA-DBSCAN:an approximate adaptive DBSCAN for finding clusters with varying densities[J].The Journal of Supercomputing,2019,75(1):142-169.
[7] BRYANT A C,CIOS K J.RNN-DBSCAN:a density-based clustering algorithm using reverse nearest neighbor density estimates[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(6):1109-1121.
[8] 郭艳婕,杨明,侯宇超,等.基于相似性度量的改进DBSCAN算法[J].数学的实践与认识,2020,50(6):164-170.
GUO Y J,YANG M,HOU Y C,et al.An improved DBSCAN algorithm based on similarity measures[J].Mathematics in Practice and Theory,2020,50(6):164-170.
[9] 王光,林国宇.改进的自适应参数DBSCAN聚类算法[J].计算机工程与应用,2020,56(14):45-51.
WANG G,LIN G Y.Improved adaptive parameter DBSCAN clustering algorithm[J].Computer Engineering and Applications,2020,56(14):45-51.
[10] 李文杰,闫世强,蒋莹,等.自适应确定DBSCAN算法参数的算法研究[J].计算机工程与应用,2019,55(5):1-7.
LI W J,YAN S Q,JIANG Y,et al.Research on method of self-adaptive determination of DBSCAN algorithm parameters[J].Computer Engineering and Applications,2019,55(5):1-7.
[11] ESTER M.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proc Int Conf Knowledg Discovery & Data Mining,1996.
[12] KARYPIS M S G,KUMAR V,STEINBACH M.A comparison of document clustering techniques[C]//TextMining Workshop at KDD2000,2000.
[13] 王兆丰,单甘霖.一种基于[k]-均值的DBSCAN算法参数动态选择方法[J].计算机工程与应用,2017,53(3):80-86.
WANG Z F,SHAN G L.[k]-means based method for dynamically selecting DBSCAN algorithm parameters[J].Computer Engineering and Applications,2017,53(3):80-86.
[14] 尹世庄,王韬,谢方方,等.基于互信息和轮廓系数的聚类结果评估方法[J].兵器装备工程学报,2020,41(8):207-213.
YIN S Z,WANG T,XIE F F,et al.Protocol clustering evaluation method based on mutual information and contour coefficient[J].Journal of Ordnance Equipment Engineering,2020,41(8):207-213.
[15] 邱保志,唐雅敏.快速识别密度骨架的聚类算法[J].计算机应用,2017(12):3482-3486.
QIU B Z,TANG Y M.Efficient clustering algorithm for fast recognition of density backbone[J].Journal of Computer Applications,2017(12):3482-3486.