LIU Haonan, NIU Baoning, CHENG Yongqiang. Measurement for Parallel Query Interaction and Execution Plan Selection[J]. Computer Engineering and Applications, 2022, 58(17): 72-80.
[1] 李桂杰,梅红.多关系SQL查询中连接顺序的优化[J].杭州电子科技大学学报,2006,26(2):31-34.
LI G J,MEI H.Join order optimization in multi-relation SQL query[J].Journal of Hangzhou Dianzi University,2006,26(2):31-34.
[2] SIMON E,LLIRBAT F,FABRET F,et al.Query plan reformulation:U.S. Patent 8,688,683[P].2014-04-01.
[3] AHMAD M.Query interactions in database systems[D].University of Waterloo,2013.
[4] AHMAD M,ABOULNAGA A,BABU S,et al.Modeling and exploiting query interactions in database systems[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management,2008:183-192.
[5] 张锦文,牛保宁,李爱萍.查询交互响应时间预测模型的采样优化[J].小型微型计算机系统,2015,36(10):2240-2244.
ZHANG J W,NIU B N,LI A P.An optimized sampling method for query interaction aware respond time modeling[J].Journal of Chinese Computer Systems,2015,36(10):2240-2244.
[6] 裴泽锋,牛保宁,张锦文,等.并行查询下查询执行计划的选择[J].计算机应用,2020,40(2):420-425.
PEI Z F,NIU B N,ZHANG J W.The choice of query execution plan under concurrent query[J].Journal of Computer Applications,2020,40(2):420-425.
[7] DUGGAN J,CETINTEMEL U,PAPAEMMANOUIL O,et al.Performance prediction for concurrent database workloads[C]//Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,2011:337-348.
[8] 张树杰.PostgreSQL技术内幕:查询优化深度探索[M].北京:电子工业出版社,2018:3-32.
ZHANG S J.PostgreSQL technical insider:in-depth exploration of query optimization[M].Beijing:Publishing House of Electronic Industry,2018:3-32.
[9] 孙振兴,向阳,刘增宝.PostgreSQL查询优化器分析研究[J].计算机技术与发展,2011,21(8):141-144.
SUN Z X,XIANG Y,LIU Z B.Analysis and research on optimizer of PostgreSQL[J].Computer Technology and Development,2011,21(8):141-144.
[10] GHOSH A,PARIKH J,SENGAR V S,et al.Plan selection based on query clustering[C]//Proceedings of the 28th International Conference on Very Large Databases,2002:179-190.
[11] JI S,LI G L.An end-to-end learning-based cost estimator[J].Proceedings of the VLDB Endowment,2019,13(3):307-319.
[12] YANG Z H,LIANG E,KAMSETTY A,et al.Deep unsupervised cardinality estimation[J].Proceedings of the VLDB Endowment,2019,13(3):279-292.
[13] WANG W,ZHANG M,CHEN G,et al.Database meets deep learning:challenges and opportunities[J].ACM SIGMOD Record,2016,45(2):17-22.
[14] SHETIYA S,THIRUMURUGANATHAN S,KOUDAS N,et al.Astrid:accurate selectivity estimation for string predicates using deep learning[J].Proceedings of the VLDB Endowment,2020,14(4):471-484.
[15] MARCUS R,NEGI P,MAO H Z,et al.Neo:a learned query optimizer[J].Proceedings of the VLDB Endowment,2020,12(11):1705-1718.
[16] MARCUS R,PAPAEMMANOUIL O.Plan-structured deep neural network models for query performance prediction[J].Proceedings of the VLDB Endowment,2019,12(11):1733-1746.
[17] ZHOU X H,JI S,LI G L,et al.Query performance prediction for concurrent queries using graph embedding[J].Proceedings of the VLDB Endowment,2020,13(9):1416-1428.
[18] 毕里缘,伍赛,陈刚.基于循环神经网络的数据库查询开销预测[J].软件学报,2018,29(3):799-810.
BI L Y,WU S,CHEN G,et al.Database query cost prediction using recurrent neural network[J].Journal of Software,2018,29(3):799-810.
[19] 章彬慧,宋春花,牛保宁,等.基于LSTM-FCN的并发查询执行计划选择[J].计算机工程与应用,2022,58(2):86-94.
ZHANG B H,SONG C H,NIU B N,et al.Selecting execution plan for concurrent queries using LSTM-FCN[J].Computer Engineering and Applications,2022,58(2):86-94.
[20] SUN Q,JANKOVIC M V,BALLY L,et al.Predicting blood glucose with an LSTM and Bi-LSTM based deep neural network[C]//14th Symposium on Neural Networks and Applications(NEUREL),2018:1-5.
[21] DRESELER M,BOISSIER M,RABL T,et al.Quantifying TPC-H choke points and their optimizations[J].Proceedings of the VLDB Endowment,2020,13(10):1206-1220.