ZHAI Zhengli, FENG Shu, LI Penghui. Collaborative Filtering Recommendation Model Based on Improved Graph Convolutional Network[J]. Computer Engineering and Applications, 2022, 58(17): 199-205.
[1] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37.
[2] HE X N,LIAO L Z.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web,2017:173-182.
[3] XUE H J,DAI X,ZHANG J,et al.Deep matrix factori-zation models for recommender systems[C]//Proceedings of IJCAI,2017:3203-3209.
[4] CHEN X,XU H,ZHANG Y,et al.Sequential recommendation with user memory networks[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining,2018:108-116.
[5] TANG J X,WANG K.Personalized top-n sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining,2018:565-573.
[6] 王永,赵旭辉,李晓光,等.一种面向协同过滤的快速最近邻居搜索方法[J].计算机工程与应用,2021,57(17):96-105.
WANG Y,ZHAO X H,LI X G,et al.Fast nearest-neighbor searching method for collaborative filtering[J].Computer Engineering and Applications,2021,57(17):96-105.
[7] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems,2016:3844-3852.
[8] SHUMAN D I,NARANG S K,FROSSARD P,et al.The emerging field of signal processing on graphs:extending high-dimensional data analysis to networks and other irregular domains[J].IEEE Signal Processing Magazine,2013,30(3):83-98.
[9] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203v3,2013.
[10] CHENG Z,DING Y,HE X,et al.A3NCF:an adaptive aspect attention model for rating prediction[C]//Proceedings of IJCAI,2018:3748-3754.
[11] SAHOO N,SINGH P,MUKHOPADHYAY T.A hidden Markov model for collaborative filtering[J].MIS Quarterly,2012,36(4):1329-1356.
[12] KOREN Y.Factorization meets the neighborhood:a multi-faceted collaborative fifiltering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2008:426-434.
[13] 邢长征,赵宏宝,张全贵,等.融合评论文本层级注意力和外积的推荐方法[J].计算机科学与探索,2020,14(6):947-957.
XING C Z,ZHAO H B,ZHANG Q G,et al.Review text hierarchical attention and outer product for recommendation method[J].Journal of Frontiers of Computer Science and Technology,2020,14(6):947-957.
[14] YING R,HE R,CHEN K F,et al.Graph convolutional neural networks for web-scale recommender systems[J].arXiv:1806.01973,2018.
[15] WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[J].arXiv:1905.08108,2019.
[16] CHEN L,WU L,HONG R C,et al.Revisiting graph based collaborative filtering:a linear residual graph convolutional[J].arXiv:2001.10167,2020.
[17] HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//NeurIPS,2017:1025-1035.
[18] WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning,2019:6861-6871.
[19] RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[J].arXiv:1205.2618,2012.
[20] ZHANG S,YAO L N,SUN A X,et al.NeuRec:on nonlinear transformation for personalized ranking[J].arXiv:1805.03002,2018.
[21] BERG R,KIPF T N,WELLING M.Graph convolutional matrix completion[J].arXiv:1706.02263,2017.
[22] WANG X,HE X N,WANG M,et al.Neural graph collaborative filtering[J].arXiv:1905.08108,2019.
[23] CHEN L,WU L,HONG R C,et al.Revisiting graph based collaborative filtering:a linear residual graph convolutional network approach[J].arXiv:2001.10167,2020.
[24] NT H,MAEHARA T.Revisiting graph neural networks:all we have is low-pass filters[J].arXiv:1905.09550,2019.