Large-Scale Multi-Label Classification Algorithm with Missing Labels
LIU Yilu, CAO Fuyuan
1.School of Computer and Information, Shanxi University, Taiyuan 030006, China
2.Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, China
LIU Yilu, CAO Fuyuan. Large-Scale Multi-Label Classification Algorithm with Missing Labels[J]. Computer Engineering and Applications, 2022, 58(17): 148-157.
[1] ZHOU F,HUANG S,XING Y.Deep semantic dictionary learning for multi-label image classification[C]//AAAI Conference on Artificial Intelligence,2021.
[2] 胡学钢,王博岩,李培培.多标签类重力密度和距离的图像注释方法[J].小型微型计算机系统,2017,38(7):1619-1624.
HU X G,WANG B Y,LI P P.Image annotation approach based on the density and the distance of multi-label gravitation[J].Journal of Chinese Computer Systems,2017,38(7):1619-1624.
[3] GONG J,LIU M,MA H,et al.Hierarchical graph transformer based deep learning model for large-scale multi-label text classification[J].IEEE Access,2020,8:30885-30896.
[4] 刘晓玲,刘柏嵩,王洋洋.一种基于图卷积网络的文本多标签学习方法[J].小型微型计算机系统,2021,42(3):531-535.
LIU X L,LIU B S,WANG Y Y.Text multi-label learning method based on graph convolutional networks[J].Journal of Chinese Computer Systems,2021,42(3):531-535.
[5] CHEN L,LI Z,ZENG T,et al.Predicting gene phenotype by multi-label multi-class model based on essential functional features[J].Molecular Genetics and Genomics,2021,296(4):905-918.
[6] HE J,LI C,YE J,et al.Classification of ocular diseases employing attention-based unilateral and bilateral feature weighting and fusion[C]//Proceedings of 2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI),Iowa City,IA,USA,April 3-7,2020.Piscataway:IEEE,2020:1258-1261.
[7] TAGAMI Y.AnnexML:approximate nearest neighbor search for extreme multi-label classification[C]//Proceedings of the 23rd ACM SIGKDD International Conference,Halifax,NS,Canada,August 13-17,2017.New York:ACM,2017:455-464.
[8] JALAN A,KAR P.Accelerating extreme classification via adaptive feature agglomeration[C]//Proceedings of IJCAI,Macao,China,August 10-16,2019:2600-2606.
[9] WADBUDE R,GUPTA V,RAI P,et al.Distributional semantics meets multi-label learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Honolulu,Hawaii,USA,January 27-February 1,2019:3747-3754.
[10] SHEN X,LIU W,TSANG I W,et al.Multi-label prediction via cross-view search[J].IEEE Transactions on Neural Networks and Learning Systems,2017,29(9):4324-4338.
[11] TAN Q,YU Y,YU G,et al.Semi-supervised multi-label classification using incomplete label information[J].Neurocomputing,2017,260(10):192-202.
[12] 王晶晶,杨有龙.针对弱标记数据的多标签分类算法[J].计算机工程与应用,2020,56(5):65-73.
WANG J J,YANG Y L.Multi-label classification algorithm for weak labeled data[J].Computer Engineering and Applications,2020,56(5):65-73.
[13] AKBARNEJAD A H,BAGHSHAH M S.An efficient large-scale semi-supervised multi-label classifier capable of handling missing labels[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(2):229-242.
[14] HUANG J,QIN F,ZHENG X,et al.Improving multi-label classification with missing labels by learning label-specific features[J].Information Sciences,2019,492(1):124-146.
[15] RASTOGI R,MORTAZA S.Multi-label classification with missing labels using label correlation and robust structural learning[J].Knowledge-Based Systems,2021,229(9):107336.
[16] SHEN X,LIU W,TSANG I W,et al.Multilabel prediction via cross-view search[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(9):4324-4338.
[17] SI S,ZHANG H,KEERTHI S S,et al.Gradient boosted decision trees for high dimensional sparse output[C]//Proceedings of International Conference on Machine Learning,Sydney,NSW,Australia,August 6-11,2017:3182-3190.
[18] SIBLINI W,MEYER F,KUNTZ P.Craftml,an efficient clustering-based random forest for extreme multi-label learning[C]//Proceedings of International Conference on Machine Learning,Stockholm,Sweden,July 10-15,2018:4671-4680.
[19] BABBAR R,SHOELKOPF B.DisMEC-distributed sparse machines for extreme multi-label classification[C]//Proceedings of the Tenth International Conference on Web Search and Data Mining,Cambridge,United Kingdom,February 6-10,2017:721-729.
[20] BABBAR R,SCHOELKOPF B.Data scarcity,robustness and extreme multi-label classification[J].Machine Learning,2019,108(8/9):1-23.
[21] XU C,TAO D C,XU C.Robust extreme multi-label learning[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,CA,USA,August 13-17,2016:1275-1284.
[22] XU M,NIU G,HAN B,et al.Matrix co-completion for multi-label classification with missing features and labels[J].arXiv:1805.09156,2018.
[23] YEH C K,WU W C,KO W J,et al.Learning deep latent space for multi-label classification[C]//Proceedings of the 21st AAAI Conference on Artificial Intelligence,California,February 4-9,2017.California:AAAI,2017:2838-2844.
[24] WANG K.Robust embedding framework with dynamic hypergraph fusion for multi-label classification[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo(ICME),Shanghai,China,July 8-12,2019:982-987.
[25] ZHANG M L,ZHOU Z H.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837.