Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (17): 13-22.DOI: 10.3778/j.issn.1002-8331.2111-0219
• Research Hotspots and Reviews • Previous Articles Next Articles
XU Linhong, LIU Xin, YAN Yue, YUAN Wei, LIN Hongfei
Online:
2022-09-01
Published:
2022-09-01
徐琳宏,刘鑫,阎月,原伟,林鸿飞
XU Linhong, LIU Xin, YAN Yue, YUAN Wei, LIN Hongfei. Survey of Russian Sentiment Analysis[J]. Computer Engineering and Applications, 2022, 58(17): 13-22.
徐琳宏, 刘鑫, 阎月, 原伟, 林鸿飞. 俄语情感分析研究综述[J]. 计算机工程与应用, 2022, 58(17): 13-22.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2111-0219
[1] Media Consumption in Russia 2020[EB/OL].[2021-10-11].https://www2.deloitte.com. [2] KOLTSOVA O,ALEXEEVA S,PASHAKHIN S,et al.PolSentiLex:sentiment detection in socio-political discussions on Russian social media[C]//Conference on Artificial Intelligence and Natural Language,2020:1-16. [3] KOLTSOVA O,ALEXEEVA S,KOLTSOV S.An opinion word lexicon and a training dataset for Russian sentiment analysis of social media[C]//Proceedings of the International Conference “Dialogue”,2016:277-287. [4] LOUKACHEVITCH N,LEVCHIK A.Creating a general russian sentiment lexicon[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation(LREC),2016:1171-1176. [5] 朱珊珊,原伟.面向俄文情感分析的新闻评论语料库建设与应用[J].外语学刊,2020(1):24-29. ZHU S S,YUAN W.Building and using news comments corpus for Russian sentiment analysis[J].Foreign Language Research,2020(1):24-29. [6] KOTELNIKOV E,PESKISHEVA T,KOTELNIKOVA A,et al.A Comparative study of publicly available russian sentiment lexicons[C]//Conference on Artificial Intelligence and Natural Language,2018:139-151. [7] KOTELNIKOV E,BUSHMELEVA N,RAZOVA E,et al.Manually created sentiment lexicons:research and development[C]//Annual International Conference “Dialogue”,2016:300-314. [8] TUTUBALINA E.Extraction and summarization methods for critical user reviews of a product[D].Kazan:Kazan Federal University,2016. [9] BLINOV P,KLEKOVKINA M,KOTELNIKOV E,et al.Research of lexical approach and machine learning methods for sentiment analysis[C]//Annual International Conference “Dialogue”,2013:51-61. [10] PANCHENKO A I.Sentiment index of the Russian speaking Facebook[C]//Proceedings of the International Conference on Computational Linguistics and Intelligent Technologies “Dialogue”,2014:506-517. [11] KUZNETSOVA E,LOUKACHEVITCH N,CHETVIORKIN I.Testing rules for a sentiment analysis system[C]//Annual International Conference “Dialogue”,2013:71-80. [12] CHEN Y,SKIENA S.Building sentiment lexicons for all major languages[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,Baltimore,2014:383-389. [13] RYBAKOV V,MALAFEEV A.Aspect-based sentiment analysis of Russian hotel reviews[C]//Proceedings of the Seventh International Conference on Analysis of Images,2018:75-84. [14] BRUNOVA E,BIDUYA Y.Aspect extraction and sentiment analysis in user reviews in russian about bank service quality[C]//IEEE 11th International Conference on Application of Information and Communication Technologies(AICT),2017:1-4. [15] KAMIL S,LEON D.Abusive language recognition in russian[C]//Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing,2021:20-25. [16] MOZETIVC I,GRFAR M,SMAILOVIC J.Multilingual Twitter sentiment classification:the role of human annotators[J].PLoS One,2016,11(5):1-26. [17] ROGERS A,ROMANOV A,RUMSHISKY S,et al.RuSentiment:an enriched sentiment analysis dataset for social media in Russian[C]//Proceedings of COLING,2018:755-763. [18] SAKENOVICH N S,ZHARMAGAMBETOV A S.On one approach of solving sentiment analysis task for kazakh and Russian languages using deep learning[C]//International Conference on Computational Collective Intelligence,2017:537-545. [19] LOUKACHEVITCH N,CHETVIORKIN I I.Open evaluating sentiment analysis systems in Russian[C]//Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing,2013:12-17. [20] CHETVIROKIN I,LOUKACHEVITCH N.Sentiment analysis track at ROMIP 2012[C]//Proceedings of International Conference “Dialog”,2013:40-50. [21] ARAUJO M,REIS J,PEREIRA A.An evaluation of machine translation for multilingual sentence-level sentiment analysis[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing,2016:1-6. [22] YUSSUPOVA N,DIANA B.Applying of sentiment analysis for texts in Russian based on machine learning approach[C]//The Second International Conference on Advances in Information Mining and Management,2012:8-14. [23] CHETVIORKIN,I,BRASLAVSKIY P,LOUKACHEVICH N.Sentiment analysis track at ROMIP 2011[C]//Proceedings of International Conference “Dialog”,2012:1-14. [24] BOBICHEV V,KANISHEVA O,CHEREDNICHENKO O.Sentiment analysis in the Ukrainian and Russian news[C]//IEEE First Ukraine Conference on Electrical and Computer Engineering(UKRCON),2017:1050-1055. [25] RUBTSOVA Y.A method for development and analysis of short text corpus for the review classification task[C]//Proceedings of Conferences Digital Libraries:Advanced Methods and Technologies,2013:269-275. [26] BLINOV V,BOLOTOVA B,BRASLAVSKI P.Large dataset and language model fun-tuning for humor recognition[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:4027-4032. [27] SMETANIN S,KOMAROV M.Sentiment analysis of product reviews in Russian using convolutional neural networks[C]//IEEE 21st Conference on Business Informatics(CBI),2019:482-486. [28] LOUKACHEVITCH N V,CHETVIORKIN I.Open evaluation of sentiment analysis systems based on the material of the Russian language[J].Scientific and Technical Information Processing,2014,41(6):370-376. [29] SIDOROV N,SLASTNIKOV S.Some features of sentiment analysis for Russian language posts and comments from social networks[J].Journal of Physics:Conference Series,2021,1740:1-7. [30] LOUKACHEVITCH N,RUBTSOVA Y.SentiRuEval-2016:overcoming time gap and data sparsity in tweet sentiment analysis[C]//Proceedings of the International Conference “Dialogue”,2016:416-426. [31] LOUKACHEVITCH N,BLINOV P,KOTELNIKOV E,et al.SentiRuEval:testing object-oriented sentiment analysis systems in Russian[J].Computational Linguistics and Intellectual Technologies,2015,2(14):3-15. [32] PONTIKI M,GALANIS D,PAPAGEORGIOU H,et al.SemEval-2016 Task 5:aspect based sentiment analysis[C]//Annual Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2016:19-30. [33] BLINOV P,KOTELNIKOV E.Using distributed representations for aspect-based sentiment analysis[C]//Proceedings of International Conference “Dialog”,2014:64-75. [34] MAKAROVA V,PETRUSHIN V.RUSLANA:a database of Russian emotional utterances[C]//International Conference on Spoken Language Processing(ICSLP),2002:1-4. [35] PEREPELKINA O,KAZIMIROVA E,KONSTANTINOVA M.RAMAS:Russian multimodal corpus of dyadic interaction for studying emotion recognition[C]//International Conference on Speech and Computer(SPECOM),2018:501-510. [36] 徐琳宏,刘鑫,原伟,等.俄语多模态情感语料库的构建及应用[J].计算机科学,2021,48(11):312-318. XU L H,LIU X,YUAN W,et al.Construction and application of multimodal emotion corpus on Russian[J].Computer Science,2021,48(11):312-318. [37] MEDAGOGA N,SHANMUGANATHA S,WHALLEY J.A comparative analysis of opinion mining and sentiment classification in non-English languages[C]//International Conference on Advances in ICT for Emerging Regions,2014:1-5. [38] AVERCHENKOV V,BUDYLSKII D,PODVESOVSKII A.Hierarchical deep learning:a promising technique for opinion monitoring and sentiment analysis in Russian-language social networks[M]//Creativity in intelligent,technologies and data science.Switzerland:Springer International Publishing,2015:583-592. [39] VIKSNA R,JEKABSONS G.Sentiment analysis in Latvian and Russian:a survey[J].Applied Computer Systems,2018,23(1):45-51. [40] SMETANIN S.The applications of sentiment analysis for Russian language texts:current challenges and future perspectives[J].IEEE Access,2020,99:110693-110719. [41] SMETANIN S,KOMAROV M.Deep transfer learning baselines for sentiment analysis in Russian[J].Information Processing & Management,2021,58(3):1-19. [42] PAK A,PAROUBEK P.Language independent approach to sentiment analysis(LIMSI participation in ROMIP 2011)[C]//Annual International Conference “Dialogue”,2012:37-50. [43] CHETVIORKIN I,LOUKACHEVITCH N.Evaluating sentiment analysis systems in Russian[C]//Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing,2013:12-17. [44] ADASKINA Y,PANICHEVA P,POPOV A.Syntax-based sentiment analysis of tweets in Russian[C]//Annual International Conference “Dialogue”,2015:1-11. [45] LOUKACHEVITCH N,RUBTSOVA Y.Entity-oriented sentiment analysis of tweets:results and problems Natalia[C]//Proceedings of the 18th International Conference on Text,Speech,and Dialogue,2015:551-559. [46] LAGUTINA K,LARIONOV V,PETRYAKOV V,et al.Sentiment classification of Russian texts using automatically generated thesaurus[C]//23rd Conference of Open Innovations Association(FRUCT),2018:217-222. [47] BAYMURZINA D,KUZNETSOV D,BURTSEV M.Language model embeddings improve sentiment analysis in Russian[C]//Annual International Conference “Dialogue”,2019:53-63. [48] KURATOV Y,ARKHIPOV M.Adaptation of deep bidirectional multilingual transformers for Russian language[C]//Annual International Conference “Dialogue”,2019:333-340. [49] ZVONAREY A,BILYI A.A comparison of machine learning methods of sentiment analysis based on Russian language Twitter data[C]//Proceedings of the 11th Majorov International Conference on Software Engineering and Computer Systems,2019:1-7. [50] DVOYNIKOVA A,VERKHOLYAK O,KARPOV A.Emotion recognition and sentiment analysis of extemporaneous speech transcriptions in Russian[C]//22nd International Conference on Speech and Computer(SPECOM),2020:136-144. [51] SVELOV K,PLATONOV K.Sentiment analysis of posts and comments in the accounts of Russian politicians on the social network[C]//25th FRUCT Conference Proceeding,2020:299-305. [52] GOLUBEV A,LOUKACHEVITCH N.Improving results on Russian sentiment datasets[C]//Conference on Artificial Intelligence and Natural Language,2020:109-121. [53] GOLUBEV A,LOUKACHEVITCH N.Use of bert neural network models for sentiment analysis in Russian[J].Automatic Documentation and Mathematical Linguistics,2021,55:17-25. [54] 刘鑫,祁瑞华,徐琳宏,等.融合多级特征的俄语推特文本情感分析[J].小型微型计算机系统,2021,42(6):1176-1183. LIU X,QI R H,XU L H,et al.Sentiment analysis of Russian tweets with multi-level features[J].Journal of Chinese Computer Systems,2021,42(6):1176-1183. [55] MAYOROV V,ANDRIANOV I.MayAnd at SemEval-2016 Task 5:syntactic and word2vec-based approach to aspect-based polarity detection in Russian[C]//Proceedings of the 10th International Workshop on Semantic Evaluation(SemEval-2016),2016:325-329. [56] ARKHIPENKO K,KOZLOV I,TROFIMOVICH J,et al.Comparison of neural network architectures for sentiment analysis of Russian tweets[C]//Annual International Conference “Dialogue”,2016:50-59. [57] VERKHOLYAK O,KARPOV A.Combined feature representation for emotion classification from Russian speech[C]//Conference on Artificial Intelligence and Natural Language,2017:68-73. [58] RUBTSOVA Y.Reducing the deterioration of sentiment analysis results due to the time impact[J].Information,2018,9:1-12. [59] ARASLANOV E,KOMOTSKIY E,AGBOZO E.Assessing the impact of text preprocessing in sentiment analysis of short social network messages in the Russian language[C]//International Conference on Data Analytics for Business and Industry:Way Towards a Sustainable Economy(ICDABI),2020:978-981. [60] 李慧.带情感意义俄语成语的综合研究[D].沈阳:辽宁大学,2013. LI H.Comprehensive phrase research on the Russian phrase with emotion[D].Shenyang:Liaoning University,2013. [61] 曹广跃.俄语情感类心理动词的级次性研究[D].哈尔滨:哈尔滨师范大学,2016. CAO G Y.A study on the order of emotional psychological verbs in Russian[D].Harbin:Harbin Normal University,2016. [62] 王向丽.论俄语情感意义的表达手段[D].济南:山东大学,2005. WANG X L.On the expression of emotional meaning in Russian[D].Jinan:Shandong University,2005. [63] 裴霞.俄语社交网络交际中情感的词汇表达手段[D].长春:吉林大学,2017. PEI X.Lexical expression of emotion in Russian social network communication[D].Changchun:Jilin University,2017. [64] 原伟,代勋勋,徐琳宏.基于俄汉新闻网评可比语料库的情感分析研究[J].解放军外国语学院学报,2019,42(2):99-106. YUAN W,DAI X X,XU L H.Sentimental analysis based on Russian-Chinese comparable corpus of news comments[J].Journal of PLA University of Foreign Languages,2019,42(2):99-106. [65] VERONIKA M,VALERY A.Phonetics of emotion in Russian speech[C]//15th International Congress of Phonetic Sciences(ICPHS),2003:2857-2860. [66] PETRUSHIN V,MAKAROVA V.Parameters of fricatives and affricates in Russian emotional speech[C]//International Conference on Speech and Computer(SPECOM),2006:25-29. [67] MAKAROVA V,PETRUSHIN V.Sonorant segment quality in Russian emotional speech[C]//16th International Congress of Phonetic Sciences(ICPHS),2007:2129-2132. [68] SIDOROV M.Could speaker,gender or age awareness be beneficial in speech-based emotion recognition?[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation(LREC),2016:61-68. [69] LITVINOVA O,SEREDIN P,LITVINOVA T.Deception detection in Russian texts[C]//Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics,2017:43-52. [70] BODRUNOVA S,BLEKANOV I,KUKARKIN M.Topics in the Russian twitter and relations between their interpretability and sentiment[C]//6th International Conference on Social Networks Analysis,Management and Security(SNAMS),2019:549-554. [71] ALVAREZ G,CHOI J,STROVER S.Good news,bad news:a sentiment analysis of the 2016 election Russian facebook ads[J].International Journal of Communication,2020,14:3027-3053. [72] 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. ZHAO Y Y,QIN B,LIU T.Sentiment analysis[J].Journal of Software,2010,21(8):1834-1848. [73] 杨亮,周逢清,林鸿飞,等.基于情感常识的情感分析[J].中文信息学报,2019,33(6):94-99. YANG L,ZHOU F Q,LIN H F,et al.Sentiment analysis based on emotion commonsense knowledge[J].Journal of Chinese Information Processing,2019,33(6):94-99. |
[1] | CHEN Qiuchang, ZHAO Hui, ZUO Enguang, ZHAO Yuxia, WEI Wenyu. Implicit Sentiment Analysis Based on Context Aware Tree Recurrent Neutral Network [J]. Computer Engineering and Applications, 2022, 58(7): 167-175. |
[2] | ZHENG Cheng, WEI Suhua, CAO Yuan. BG-CNN Combined with Grammatical Information for Aspect Level Sentiment Classification [J]. Computer Engineering and Applications, 2022, 58(5): 148-155. |
[3] | ZHAO Hong, FU Zhaoyang, ZHAO Fan. Microblog Sentiment Analysis Based on BERT and Hierarchical Attention [J]. Computer Engineering and Applications, 2022, 58(5): 156-162. |
[4] | XU Chao, YE Ning, XU Kang, WANG Ruchuan. Multiple Classification Method for Microblog Negative Emotions Integrating MAML and BiLSTM [J]. Computer Engineering and Applications, 2022, 58(5): 179-185. |
[5] | MENG Jiana, LYU Pin, YU Yuhai, ZHENG Zhikun. Aspect-Level Cross-Domain Sentiment Analysis Based on CNN [J]. Computer Engineering and Applications, 2022, 58(16): 175-183. |
[6] | YE Xingxin, XU Yang, LUO Mengshi. ALBERT-AFSFN Based Sentiment Analysis of Chinese Short Text [J]. Computer Engineering and Applications, 2022, 58(12): 170-176. |
[7] | LIU Lulu, YANG Yan, WANG Jie. ABAFN:Aspect-Based Sentiment Analysis Model for Multimodal [J]. Computer Engineering and Applications, 2022, 58(10): 193-199. |
[8] | YANG Shanliang, CHANG Zheng. Chinese Implicit Sentiment Analysis Based on Graph Attention Neural Network [J]. Computer Engineering and Applications, 2021, 57(24): 161-167. |
[9] | YUAN Xun, LIU Rong, LIU Ming. Aspect-Level Sentiment Analysis Model Incorporating Multi-layer Attention [J]. Computer Engineering and Applications, 2021, 57(22): 147-152. |
[10] | ZHAO Lihua, WANG Chunli, CHU Yufeng. Attention-Based Double BiReGU Model for Aspect Term Extraction [J]. Computer Engineering and Applications, 2021, 57(22): 160-165. |
[11] | LI Wenliang, YANG Qiuxiang, QIN Quan. Multi-feature Mixed Model Text Sentiment Analysis Method [J]. Computer Engineering and Applications, 2021, 57(19): 205-213. |
[12] | HU Renyuan, LIU Jianhua, BU Guannan, ZHANG Dongyang, LUO Yixuan. Research on Sentiment Analysis of Multi-level Semantic Collaboration Model Fused with BERT [J]. Computer Engineering and Applications, 2021, 57(13): 176-184. |
[13] | WANG Ting, YANG Wenzhong. Review of Text Sentiment Analysis Methods [J]. Computer Engineering and Applications, 2021, 57(12): 11-24. |
[14] | KANG Yue, XUE Huizhen, HUA Bin. Analysis of Fine-Grained Commodity Evaluation for Deep Learning Network [J]. Computer Engineering and Applications, 2021, 57(11): 140-147. |
[15] | CAO Junbo,YE Xia,XU Feixiang,YIN Liedong. Improved CBOW Emotional Information Acquisition Research [J]. Computer Engineering and Applications, 2020, 56(9): 142-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||