BI Wenjie, WANG Rong. Dynamic Pricing Strategy Based on Gaussian Process and Parallel Thompson Sampling[J]. Computer Engineering and Applications, 2022, 58(16): 303-311.
[1] FERREIRA K J,LEE B H A,SIMCHI-LEVI D.Analytics for an online retailer:demand forecasting and price optimization[J].Manufacturing & Service Operations Management,2016,18(1):69-88.
[2] 李丽萍,于宏新,肖艳玲.双寡头竞争结构下同质产品动态定价研究[J].统计与决策,2011(2):47-49.
LI L P,YU H X,XIAO Y L.Research on dynamic pricing of homogeneous products under duopoly competition structure[J].Statistics and Decision,2011(2):47-49.
[3] 毕文杰,刘承飞,刘海英.考虑需求替代与社会学习的易逝品动态定价策略[J].系统工程,2018,36(1):53-62.
BI W J,LIU C F,LIU H Y.Dynamic pricing of perishable goods considering demand substitution and social learning[J].Systems Engineering,2012,36(1):53-62.
[4] CERYAN O.Asymmetric pricing and replenishment controls for substitutable products[J].Decision Sciences,2019,50(4):1-12.
[5] 赵天,胡敏,胡玉生.基于Hotelling模型的可替代产品动态定价研究[J].北京信息科技大学学报(自然科学版),2020,35(4):38-45.
ZHAO T,HU M,HU Y S.Study on dynamic pricing of substitute products based on the Hotelling model[J].Journal of Beijing University of Information Science and Technology(Natural Science Edition),2020,35(4):38-45.
[6] BESBES O,ZEEVI A.Blind network revenue management[J].Social Science Electronic Publishing,2014,60(6):1537-1550.
[7] BESBES O,ZEEVI A.Dynamic pricing without knowing the demand function:risk bounds and near-optimal algorithms[J].Operations Research,2009,57(6):1407-1420.
[8] SLIVKINS A.Introduction to multi-armed bandits[J].arXiv:1904.07272,2019.
[9] 毕文杰,郭乐薇.基于多摇臂赌博机的产品定价算法[J].计算机工程与应用,2021,57(11):224-231.
BI W J,GUO L W.Product pricing algorithm based on multi-armed bandit[J].Computer Engineering and Applications,2021,57(11):224-231.
[10] 乔勋双,毕文杰.考虑时变奖励的多摇臂算法在动态定价中的应用[J].计算机工程与应用,2021,57(12):237-242.
QIAO X S,BI W J.Application of multi-armed bandit algorithm with time-varying rewards in dynamic pricing[J].Computer Engineering and Applications,2021,57(12):237-242.
[11] FERREIRA K J,SIMCHI-LEVI D.Online network revenue management using Thompson sampling[J].Operations Research,2018,66(6):1586-1602.
[12] RINGBECK D,HUCHZERMEIER A.Dynamic pricing and learning:an application of Gaussian process regression[J/OL].Social Science Electronic Publishing(2019-06-24)[2020-12-28].https://ssrn.com/abstract=3406293.
[13] HERNáNDEZ-LOBATO J M,REQUEIMA J,PYZER-KNAPP E O,et al.Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical space[C]//Proceedings of the 34th International Conference on Machine Learning,2017:1470-1479.
[14] KANDASAMY K,KRISHNAMURTHY A,SCHNEIDER J,et al.Parallelised Bayesian optimisation via Thompson sampling[C]//Proceedings of the 2018 International Conference on Artificial Intelligence and Statistics,2018:133-142.
[15] DE PALMA A,MENDLER-DüNNER C,PARNELL T,et al.Acquisition functions for batch Bayesian optimization[J/OL].arXiv:1903.09434,2019.
[16] RASMUSSEN C E,WILLIAMS C K I.Gaussian processes for machine learning[M].Cambridge:MIT Press,2006.
[17] 崔佳旭,杨博.贝叶斯优化方法和应用综述[J].软件学报,2018,29(10):3068-3090.
CUI J X,YANG B.Survey on Bayesian optimization methodology and applications[J].Journal of Software,2018,29(10):3068-3090.
[18] SHAHRIARI B,SWERSKY K,WANG Z,et al.Taking the human out of the loop:a review of Bayesian optimization[J].Proceedings of the IEEE,2015,104(1):148-175.
[19] RUSSO D,VAN ROY B,KAZEROUNI A,et al.A tutorial on Thompson sampling[J].Foundations and Trends in Machine Learning,2017,11(1):1-42.
[20] BUBECK S,LIU C Y.Prior-free and prior-dependent regret bounds for Thompson sampling[C]//Proceedings of the 48th Annual Conference on Information Sciences and Systems,2014.
[21] SRINIVAS N,KRAUSE A,KAKADE S M,et al,Information-theoretic regret bounds for Gaussian process optimization in the bandit setting[J].IEEE Transactions on Information Theory,2012,58(5):3250-3265.
[22] RUSSO D,VAN ROY B.Learning to optimize via posterior sampling[J].Mathematics of Operations Research,2014,39(4):1221-1243.
[23] AGRAWAL S,GOYAL N.Thompson sampling for contextual bandits with linear payoffs[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning,2013:127-135.