Video Super-Resolution Reconstruction Algorithm Based on Optical Flow Residual
WU Hao, LAI Huicheng, QIAN Xuze, CHEN Hao
1.College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
2.Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China
WU Hao, LAI Huicheng, QIAN Xuze, CHEN Hao. Video Super-Resolution Reconstruction Algorithm Based on Optical Flow Residual[J]. Computer Engineering and Applications, 2022, 58(15): 220-228.
[1] GARCIA D C,DOREA C,DE QUEIROZ R L.Super resolution for multiview images using depth information[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,22(9):1249-1256.
[2] WANG N,TAO D,GAO X,et al.A comprehensive survey to face hallucination[J].International Journal of Computer Vision,2014,106(1):9-30.
[3] AFONSO M,ZHANG F,BULL D R.Video compression based on spatio-temporal resolution adaptation[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,29(1):275-280.
[4] ZHONG Y,ZHANG L.Remote sensing image subpixel mapping based on adaptive differential evolution[J].IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society,2012,42(5):1306.
[5] ZHANG L,ZHANG H,SHEN H,et al.A super-resolution reconstruction algorithm for surveillance images[J].Signal Processing,2010,90(3):848-859.
[6] YUE L,SHEN H,LI J.Image super-resolution:the techniques,applications,and future[J].Signal Processing,2016,128(11):389-408.
[7] K?HLER T,HUANG X,SCHEBESCH F.Robust multiframe super-resolution employing iteratively re-weighted minimization[J].IEEE Transactions on Computational Imaging,2016,2(1):42-58.
[8] LIU C,SUN D.A Bayesian approach to adaptive video super resolution[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2011:209-216.
[9] HUANG Y,WANG W.Bidi rectional recurrent convolutional networks for multi-frame super-resolution[C]//Advances in Neural Information Processing Systems(NIPS),2015:235-243.
[10] KONG D,HAN M,XU W,et al.A conditional random field model for video super-resolution[C]//Advances in International Conference on Pattern Recognition(ICPR),2006:619-622.
[11] NASROLLAHI K,MOESLUND T B.Extracting a good quality frontal face image from a low-resolution video sequence[J].IEEE Transactions on Circuits & Systems for Video Technology,2011,21(10):1353-1362.
[12] DONG C,LOY C C,HE K,et al.Learning a deep convolutional network for image super-resolution[C]//2014 IEEE?European Conference on Computer Vision(ECCV),2014:184-199.
[13] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]// 2016 IEEE Conference on Computer Vision & Pattern Recognition(CVPR),2016:1646-1654.
[14] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision & Pattern Recognition(CVPR),2017:1132-1140.
[15] LEDIG C,THEIS L,HUSZAR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the Computer Vision and Pattern Recognition(CVPR),2017:105-114.
[16] 彭晏飞,高艺,杜婷婷,等.生成对抗网络的单图像超分辨率重建方法[J].计算机科学与探索,2020,14(9):1612-1620.
PENG Y F,GAO Y,DU T T,et al.Single image super-resolution reconstruction method for generative adversarial network[J].Journal of Frontiers of Computer Science and Technology,2020,14(9):1612-1620.
[17] 唐家军,刘辉,胡雪影.功能型复合深度网络的图像超分辨率重建[J].计算机科学与探索,2020,14(8):1368-1379.
TANG J J,LIU H,HU X Y.Image super-resolution reconstruction of functional composite deep network[J].Journal of Frontiers of Computer Science and Technology,2020,14(8):1368-1379.
[18] DAI Q Q,YOO S H,KAPPELER A,et al.Dictionary-based multiple frame video super-resolution[C]//2015 IEEE International Conference on Image Processing(ICIP),2015:83-87.
[19] YANG G S,RAMANAN D.Volumetric correspondence networks for optical flow[C]//Advances in Neural Information Processing Systems(NIPS),2019:793-803.
[20] SAJJADI M S M,VEMULAPALLI R,BROWN M.Frame-recurrent video super-resolution[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:6626-6634.
[21] KAPPELER A,YOO S,DAI Q,et al.Video super-resolution with convolutional neural networks[J].IEEE Transactions on Computational Imaging,2016,2(2):109-122.
[22] CABALLERO J,LEDIG C,ANDREW A,et al.Real-time video super-resolution with spatio-temporal networks and motion compensation[C]//Advances in Computer Vision and Pattern Recognition(CVPR),2017:2848-2857.
[23] LIAO R,TAO X,LI R,et al.Video super-resolution via deep draft-ensemble learning[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),2015:531-539.
[24] JEAN-YVES B.Pyramidal implementation of the lucas kanade feature tracker description of the algorithm[R].USA:Intel Corporation Microprocessor Research Labs,2000.
[25] ZHAO H,GALLO O,FROSIO I,et al.Loss functions for image restoration with neural networks[J].IEEE Transactions on Computational Imaging,2017,3(1):47-57.
[26] TAO X,GAO H,LIAO R,et al.Detail-revealing deep video super-resolutionin[C]//Advances in Computer Vision and Pattern Recognition(CVPR),2017:4482-4490.
[27] ZHANG Y L,LI K P,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//European Conference on Computer Vision(ECCV),2018:294-310.
[28] WANG L,GUO Y.Learning for video super-resolution through hr optical flow estimation[C]//Advances in Asian Conference on Computer Vision(ACCV),2018:514-529.
[29] YING X,WANG L,WANG Y,et al.Deformable 3D Convolution for Video Super-Resolution[J].IEEE Signal Processing Letters,2020,27(4):1500-1504.
[30] YING X Y,WANG L G.Zooming slow-mo:fast and accurate one-stage space-time video super-resolution[C]//Advances in Computer Vision and Pattern Recognition(CVPR),2020:3367-3376.