[1] 胡世哲,娄铮铮,王若彬,等.一种双重加权的多视角聚类方法[J].计算机学报,2020,43(9):1708-1720.
HU S Z,LOU Z Z,WANG R B,et al.Dual-weighted multi-view clustering[J].Chinese Journal of Computers,2020,43(9):1708-1720.
[2] 柏锷湘,罗可,罗潇.结合自然和共享最近邻的密度峰值聚类算法[J].计算机科学与探索,2021,15(5):931-940.
BAI E X,LUO K,LUO X.Peak density clustering algorithm combining natural and shared nearest neighbor[J].Journal of Frontiers of Computer Science and Technology,2021,15(5):931-940.
[3] 田艳玲,张维桐,张锲石,等.图像场景分类技术综述[J].电子学报,2019,47(4):915-926.
TIAN Y L,ZHANG W T,ZHANG Q S,et al.Review on image scene classification technology[J].Acta Automatica Sinica,2019,47(4):915-926.
[4] 时光.基于机器学习的模式识别技术及其医学应用探索[D].济南:山东大学,2019.
SHI G.Pattern recognition based on machine learning and its implementations on clinical technologies[D].Jinan:Shandong University,2019.
[5] 朱吕行.面向生物医学文本及图谱的知识挖掘与知识发现[D].合肥:中国科学技术大学,2019.
ZHU L X.Knowledge mining and knowledge discovery for biomedical text and graph[D].Hefei:University of Science and Technology of China,2019.
[6] DANIEL B,WERNER D.Deep learning in bioinformatics and biomedicine[J].Briefings in Bioinformatics,2021,22(2):1513-1514.
[7] 伍育红.聚类算法综述[J].计算机科学,2015,42(S1):491-499.
WU Y H.General overview of clustering algorithms[J].Computer Science,2015,42(S1):491-499.
[8] 田春子,杨万,杨德会,等.基于K-Means与DBSCAN聚类算法据背景下基于高校综合性数据的学生行为分析与研究[J].科学技术创新,2020(32):91-93.
TIAN C Z,YANG W,YANG D H,et al.Analysis and research on student behavior based on comprehensive data of colleges and universities under the background of K-means and DBSCAN clustering algorithm[J].Scientific and Technological Innovation,2020(32):91-93.
[9] 王光,林国宇.改进的自适应参数DBSCAN聚类算法[J].计算机工程与应用,2020,56(14):45-51.
WANG G,LIN G Y.Improved adaptive parameter DBSCAN clustering algorithm[J].Computer Engineering and Applications,2020,56(14):45-51.
[10] GHOLIZADEH N,SAADATFAR H,HANAFI N.K-DBSCAN:an improved DBSCAN algorithm for bigdata[J].The Journal of Supercomputing,2021,77(6):6214-6235.
[11] JIN H D.Scalable model-based clustering algorithms for large databases and their applications[D].Hong Kong,China:The Chinese University of Hong Kong,2002.
[12] 秦佳睿,徐蔚鸿,马红华,等.自适应局部半径的DBSCAN聚类算法[J].小型微型计算机系统,2018,39(10):2186-2190.
QIN J R,XU W H,MA H H,et al.Self-adaptive local eps DBSCAN[J].Journal of Chinese Computer Systems,2018,39(10):2186-2190.
[13] FENG Z H,QIAN X Z,ZHAO N N.Greedy DBSCAN:an improved DBSCAN algorithm on multi-density clustering[J].Application Research of Computers,2016,33(9):2693-2696.
[14] 于彦伟,贾召飞,曹磊,等.面向位置大数据的快速密度聚类算法[J].软件学报,2018,29(8):2470-2484.
YU Y W,JIA Z F,CAO L,et al.Fast density-based clustering algorithm for location big data[J].Journal of Software,2018,29(8):2470-2484.
[15] KUMAR K M,RAMA M.A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method[J].Pattern Recognition,2016,58(3):39-48.
[16] 周水庚,周傲英,曹晶,等.一种基于密度的快速聚类算法[J].计算机研究与发展,2000(11):8-13.
ZHOU S G,ZHOU A Y,CAO J,et al.A fast density-based clustering algorithm[J].Journal of Computer Research and Development,2000(11):8-13.
[17] BORAH B,BHATTACHARYYA D K.An improved sampling-based DBSCAN for large spatial data bases[C]//International Conference on Intelligent Sensing & Information Processing,2004.
[18] PROKOPENKO A,LEBRUN-GRANDIE D,ARNDT D.Fast tree-based algorithms for DBSCAN on GPUs[J].arXiv:2103.05162,2021.
[19] LI S S.An improved DBSCAN algorithm based on the neighbor similarity and fast nearest neighbor query[J].IEEE Access,2020,8:47468-47476.
[20] SHIBLA T P,KUMAR K.Improving efficiency of DBSCAN by parallelizing KD-tree using spark[C]//2018 Second International Conference on Intelligent Computing and Control Systems(ICICCS),2018.
[21] 韩家炜,坎伯,裴健.数据挖掘:概念与技术[M].3版.北京:机械工业出版社,2012.
HAN J W,KAMBER M,PEI J.Data mining concepts and techniques[M].3rd ed.Beijing:China Machine Press,2012.
[22] HUBERT L,ARABIE P.Comparing partitions[J].Journal of Classification,1985,2(1):193-218.
[23] VINH N X,EPPS J,BAILEY J.Information theoretic measures clusterings comparison:variants,properties,normali-
zation and correction for chance[J].Journal of Machine Learning Research,2010,11:2837-2854.