[1] CAO W,LIU Q,HE Z.Review of pavement defect detection methods[J].IEEE Access,2020,8:14531-14544.
[2] MOHAN A,POOBAL S.Crack detection using image processing:a critical review and analysis[J].Alexandria Engineering Journal,2018,57(2):787-798.
[3] PRASAD P S,RAO B P.Review on machine vision based insulator inspection systems for power distribution system[J].Journal of Engineering Science & Technology Review,2016,9(5):135-141.
[4] JENSSEN R,ROVERSO D.Automatic autonomous vision-based power line inspection:a review of current status and the potential role of deep learning[J].International Journal of Electrical Power & Energy Systems,2018,99:107-120.
[5] ZAKERI H,NEJAD F M,FAHIMIFAR A.Image based techniques for crack detection,classification and quantification in asphalt pavement:a review[J].Archives of Computational Methods in Engineering,2017,24(4):935-977.
[6] LI P,WANG C,LI S M,et al.Research on crack detection method of airport runway based on twice-threshold segmentation[C]//2015 Fifth International Conference on Instrumentation and Measurement,Computer,Communication and Control(IMCCC),2015:1716-1720.
[7] 孙卫红,李乾坤,邵铁锋,等.基于机器视觉的桩护壁裂缝检测方法[J].计算机工程与应用,2019,55(14):260-265.
SUN W H,LI Q K,SHAO T F,et al.Crack detection algorithm of protective wall for piles based on machine vision[J].Computer Engineering and Applications,2019,55(14):260-265.
[8] SHI Y,CUI L,QI Z,et al.Automatic road crack detection using random structured forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445.
[9] 韩锟,韩洪飞.基于区域级和像素级特征的路面裂缝检测方法[J].铁道科学与工程学报,2018,15(5):1178-1186.
HAN K,HAN H F.Pavement crack detection method based on region-level and pixel-level features[J].Journal of Railway Science and Engineering,2018,15(5):1178-1186.
[10] CHA Y J,CHOI W,BüYüK?ZTüRK O.Deep learning-based crack damage detection using convolutional neural networks[J].Computer-Aided Civil and Infrastructure Engineering,2017,32(5):361-378.
[11] 李良福,马卫飞,李丽,等.基于深度学习的桥梁裂缝检测算法研究[J].自动化学报,2019,45(9):1727-1742.
LI L F,MA W F,LI L,et al.Research on detection algorithm for bridge cracks based on deep learning[J].Acta Automatica Sinica,2019,45(9):1727-1742.
[12] YANG F,ZHANG L,YU S,et al.Feature pyramid and hierarchical boosting network for pavement crack detection[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(4):1525-1535.
[13] ZOU Q,ZHANG Z,LI Q,et al.Deepcrack:learning hierarchical convolutional features for crack detection[J].IEEE Transactions on Image Processing,2018,28(3):1498-1512.
[14] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2015:234-241.
[15] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017),2017:2117-2125.
[16] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(2):318-327.
[17] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008.
[18] CHEN K,PANG J,WANG J,et al.Hybrid task cascade for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:4974-4983.
[19] ZOU Q,CAO Y,LI Q,et al.CrackTree:automatic crack detection from pavement images[J].Pattern Recognition Letters,2012,33(3):227-238.
[20] AMHAZ R,CHAMBON S,JéRME I,et al.Automatic crack detection on 2d pavement images:an algorithm based on minimal path selection[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(10):2718-2729.