NIE Ling, ZHANG Jian, HU Maozheng. Short-Term Traffic Flow Combination Prediction Based on CEEMDAN Decomposition[J]. Computer Engineering and Applications, 2022, 58(11): 279-286.
[1] TU Y,LIN S,QIAO J,et al.Deep traffic congestion prediction model based on road segment grouping[J].Applied Intelligence,2021,51(11):8519-8541.
[2] BOUKERCHE A,WANG J.Machine learning-based traffic prediction models for intelligent transportation systems[J].Computer Networks,2020,181:107530.
[3] 马秋芳.改进PSO优化的BP神经网络短时交通流预测[J].计算机仿真,2019,36(4):94-98.
MA Q F.BP neural network shor-term traffic flow prediction based on improved particle swarm optimization[J].Computer Simulation,2019,36(4):94-98.
[4] QIAN Y,ZENG J,ZHANG S,et al.Short-term traffic prediction based on genetic algorithm improved neural network[J].Tehnicki Vjesnik-Technical Gazette,2020,27(4):1270-1276.
[5] LU S,ZHANG Q,CHEN G,et al.A combined method for short-term traffic flow prediction based on recurrent neural network[J].Alexandria Engineering Journal,2021,60(1):87-94.
[6] 杨刚,王乐,戴丽珍,等.自适应权重粒子群优化LS-SVM的交通流预测[J].控制工程,2017,24(9):1838-1843.
YANG G,WANG L,DAI L Z,et al.Traffic flow prediction based on adaptive weight particle swarm optimization LS-SVM[J].Control Engineering,2017,24(9):1838-1843.
[7] 殷礼胜,唐圣期,李胜,等.基于EEMD-IPSO-LSSVM的交通流组合预测模型[J].电子测量与仪器学报,2019,33(12):126-133.
YIN L S,TANG S Q,LI S,et al.Traffic flow combination prediction model based on EEMD-IPSO-LSSVM[J].Journal of Electronic Measurement and Instrument,2019,33(12):126-133.
[8] 肖进丽,李晓磊.基于集合经验模态分解和差分进化算法优化BP神经网络的船舶交通流预测[J].大连海事大学学报,2018,44(2):9-14.
XIAO J L,LI X L.Ship traffic flow prediction based on ensemble empirical mode decomposition and differential evolution algorithm optimized BP neural network[J].Journal of Dalian Maritime University,2018,44(2):9-14.
[9] TIAN X,YU D,XING X,et al.Hybrid short-term traffic flow prediction model of intersections based on improved complete ensemble empirical mode decomposition with adaptive noise[J].Advances in Mechanical Engineering,2019,11(4).
[10] 胡爱军,孙敬敬,向玲.经验模态分解中的模态混叠问题[J].振动、测试与诊断,2011,31(4):429-434.
HU A J,SUN J J,XIANG L.Mode mixing in empirical mode decomposition[J].Journal of Vibration,Measurement and Diagnosis,2011,31(4):429-434.
[11] WU Z,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2011,1(1):1-41.
[12] TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//International Conference on Acoustics Speech and Signal Processing,2011:4144-4147.
[13] 马飞虎,饶志强.城市道路短时交通流预测方法研究[J].公路,2017,62(6):192-196.
MA F H,RAO Z Q.Research on short term traffic flow prediction method of urban road[J].Highway,2017,62(6):192-196.
[14] QU W,LI J,YANG L,et al.Short-term intersection traffic flow forecasting[J].Sustainability,2020,12(19):1-13.
[15] SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9:293-300.
[16] ZIEGEL E R,BOX G,JENKINS G M,et al.Time series analysis,forecasting,and control[J].Journal of Time,1976,31(2):238-242.
[17] 刘星委.基于ARIMA与长短时记忆神经网络的高速公路交通流预测及比较的研究[D].成都:西南交通大学,2018.
LIU X W.Study on prediction and comparison of expressway traffic flow based on ARIMA and long short term memory neural network[D].Chengdu:Southwest Jiaotong University,2018.
[18] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
[19] WANG Z,CHU R,ZHANG M,et al.An improved hybrid highway traffic flow prediction model based on machine learning[J].Sustainability,2020,12(20):1-22.