WANG Changqing, HE Kunyu, JIANG Shuai. Narrow Space Object Detection Method by Improved YOLOv4-tiny Network[J]. Computer Engineering and Applications, 2022, 58(10): 240-248.
[1] 华志超.基于监控视频的电梯轿厢内进入目标检测算法研究与实现[D].南京:东南大学,2019.
HUA Z C.Research and implementation of detection algorithm for entering object in elevator car based on surveillance video[D].Nanjing:Southeast University,2019.
[2] 张开生,郭碧筱,刘泽新,等.基于人流量检测的改进CN算法[J].计算机工程与设计,2020,41(2):411-416.
ZHANG K S,GUO B X,LIU Z X,et al.Improved CN algorithm based on pedestrain flow detection[J].Computer Engineering and Design,2020,41(2):411-416.
[3] 孙振.电梯轿厢内异常行为检测及其监控系统设计[D].徐州:中国矿业大学,2020.
SUN Z.Abnormal behavior detection and monitoring system design in elevator car[D].Xuzhou:China University of Mining and Technology,2020.
[4] SAUNDERS C,STITSON M O,WESTON J,et al.Support vector machine[J].Computer Science,2002,1(4):1-28.
[5] 张媛,臧坤,华志超,等.基于电梯监控视频的轿厢中狗识别的算法研究[J].机械设计与制造工程,2018,47(3):103-107.
ZHANG Y,ZANG K,HUA Z C,et al.Research on algorithm of dog recognition in elevator based on video[J].Mechanical Design and Manufacturing Engineering,2018,47(3):103-107.
[6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[7] LIU W,ANGUELOY D,ERHAN D,et al.SSD:Single shot multibox detector[C]//14th European Conference on Computer Vision,2016:21-37.
[8] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016:779-788.
[9] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:1-4.
[10] 王国新,王珂硕.基于注意力机制的煤矿井下行人检测的轻量化网络结构[J].黑龙江科技大学学报,2021,31(6):824-829.
WANG G X,WANG K S.Lightweight network structure of underground pedestrian detection in coal mine based on attention mechanism[J].Journal of Heilongjiang University of Science & Technology,2021,31(6):824-829.
[11] 李海滨,孙远,张文明,等.基于YOLOv4-tiny的溜筒卸料煤尘检测方法[J].光电工程,2021,48(6):73-86.
LI H B,SUN Y,ZHANG W M,et al.The detection method for coal dust caused by chute discharge based on YOLOv4-tiny[J].Opto-Electronic Engineering,2021,48(6):73-86.
[12] 华志超,章国宝.基于YOLO的电梯轿厢中狗识别算法[J].工业控制计算机,2019,32(6):15-16.
HUA Z C,ZHANG G B.YOLO-based algorithm of dog recognition in elevator[J].Industrial Control Computer,2019,32(6):15-16.
[13] 王琳,卫晨,李伟山,等.结合金字塔池化模块的YOLOv2的井下行人检测[J].计算机工程与应用,2019,55(3):133-139.
WANG L,WEI C,LI W S,et al.Pedestrian detection based on YOLOv2 with pyramid pooling module in underground coal mine[J].Computer Engineering and Applications,2019,55(3):133-139.
[14] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:936-944.
[15] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition,2020.
[16] 阳珊,王建,胡莉,等.改进RetinaNet的遮挡目标检测算法研究[J/OL].计算机工程与应用(2021-11-15)[2021-12-27].http://kns.cnki.net/kcms/detail/11.2127.TP.20211112.
1633.012.html.
YANG S,WANG J,HU L,et al.Research on improved RetinaNet’s occluded object detection algorithm[J/OL].Computer Engineering and Applications(2021-11-15)[2021-12-27].http://kns.cnki.net/kcms/detail/11.2127.TP.20211112.
1633.012.html.
[17] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops,Seattle,Jun 14-19,2020:1571-1580.
[18] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:6230-6239.
[19] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[20] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[J].arXiv:2103.02907v1,2021.
[21] 王兵,乐红霞,李文璟,等.改进YOLO轻量化网络的口罩检测算法[J].计算机工程与用,2021,57(8):62-69.
WANG B,LE H X,LI W J,et al.Mask detection algorithm based on improved YOLO lightweight network[J].Computer Engineering and Applications,2021,57(8):62-69.