TIAN Wei’an, CHEN Hongmei, ZHOU Lihua. Diversified Recommendation Method Based on Similar Users’Curiosity[J]. Computer Engineering and Applications, 2021, 57(23): 113-121.
[1] CREMONESI P,KOREN Y,TURRIN R.Performance of recommender algorithms on top-n recommendation tasks[C]//ACM Conference on Recommender Systems,2010.
[2] 姜书浩,张立毅,周娜.个性化推荐系统中的多样性综述[J].软件工程与应用,2019,8(3):172-178.
JIANG Shuhao,ZHANG Liyi,ZHOU Na.A survey of diversity in personalized recommendation systems[J].Software Engineering and Applications,2019,8(3):172-178.
[3] RENNER B.Curiosity about people:the development of a social curiosity measure in adults[K].Journal of Personality Assessment,2006,87(3):305-316.
[4] WU Q,LIU S,MIAO C,et al.A social curiosity inspired recommendation model to improve precision,coverage and diversity[C]//2016 IEEE/WIC/ACM International Conference on Web Intelligence,Omaha,2016:240-247.
[5] HERLOCKER J L,KONSTAN J A,BORCHERS A,et al.An algorithmic framework for performing collaborative filtering[C]//Proceedings of SIGIR,1999:230-237.
[6] CHENG P,WANG S,MA J,et al.Learning to recommend accurate and diverse items[C]//Proceedings of the 26th International Conference on World Wide Web,2017:183-192.
[7] ZHOU T,SU R,LIU R,et al.Accurate and diverse recommendations via eliminating redundant correlations[J].New Journal of Physics,2009,11(12):123008.
[8] PARK Y J,TUZHILIN A.The long tail of recommender system sand how to leverage it[C]//Proc of the 2008 ACM Conf on Recommender Systems,2008:11-18.
[9] YIN H,CUI B,LI J,et a1.Challenging the long tail recommendation[J].Proc of the VLDB Endowment,2012,5(9):896-907.
[10] PARK Y J.The adaptive clustering method for the long tail problem of recommender systems[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(8):1904-1915.
[11] ADOMAVICIUS G,KWON Y.Improving aggregate recommendation diversity using ranking-based techniques[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(5):896-911.
[12] ADOMAVICIUS G,KWON Y.Maximizing aggregate recommendation diversity:a graph theoretic approach[C]//Proc of the 1st International Workshop on Novelty and Diversity in Recommender Systems,2011:3-10.
[13] 王森.一种基于整体多样性增强的推荐算法[J].计算机工程与科学,2016,38(1):183-187.
WANG Sen.A recommendation algorithm based on aggregate diversity enhancement[J].Computer Engineering and Science,2016,38(1):183-187.
[14] 张骏,丁艳辉,金连旭.基于属性值差异度的推荐多样性改进算法[J].计算机与数字工程,2017,45(2):206-209.
ZHANG Jun,DING Yanhui,JIN Lianxu.An improved algorithm for recommendation diversity based on the dissimilarity of attribute value[J].Computer and Digital Engineering,2017,45(2):206-209.
[15] PATHAK A,PATRA B K.A knowledge reuse framework for improving novelty and diversity in recommendations[C]//Proceedings of the 2nd ACM IKDD Conference on Data Sciences,2015:11-19.
[16] GOLBECK J.Filmtrust:movie recommendations from semantic web-based social networks[C]//Consumer Communications & Networking Conference,2006.
[17] 郑鹏,王应明,梁薇.基于信任和矩阵分解的协同过滤推荐算法[J].计算机工程与应用,2018,54(13):34-40.
ZHENG Peng,WANG Yingming,LIANG Wei.Collaborative filtering recommendation algorithm based on trust and matrix factorization[J].Computer Engineering and Applications,2018,54(13):34-40.
[18] MA H H,ZHOU D,LIU C,et al.Recommender systems with social regularization[C]//Proceedings of WSDM,2011:287-296.
[19] HARPER F M,KONSTAN J A.The movielens datasets:history and context[J].ACM Transactions on Interactive Intelligent Systems,2016,5(4):19.
[20] 黄璐,林川杰,何军,等.融合主题模型和协同过滤的多样化移动应用推荐[J].软件学报,2017,28(3):708-720.
HUANG Lu,LIN Chuanjie,HE Jun,et al.Diversified mobile application recommendation combining topic model and collaborative filtering[J].Journal of Software,2017,28(3):708-720.