Computer Engineering and Applications ›› 2021, Vol. 57 ›› Issue (21): 203-208.DOI: 10.3778/j.issn.1002-8331.2006-0320

Previous Articles     Next Articles

Adaptive Feature Fusion Network for Crowd Counting

ZUO Jianhao, JIANG Wengang   

  1. School of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
  • Online:2021-11-01 Published:2021-11-04

自适应融合特征的人群计数网络

左健豪,姜文刚   

  1. 江苏科技大学 电子信息学院,江苏 镇江 212003

Abstract:

In an attempt to solve the problems of scale change and multi-level feature fusion in population counting method, inspired by U-Net encoder decoder structure network, an adaptive feature fusion network is proposed to carry out accurate population counting. The Adaptive Feature Fusion Module(AFFM) is proposed to efficiently aggregate the high-level semantic information and low-level spatial detail extracted by the encoder branch according to the needs of decoder branch. The Adaptive Context Extractor(ACE) is proposed to extract multi-scale context information on multiple effective field-of-views, then these features are adaptively fused to improve the robustness of the network to scale changes. By conducting exhaustive experiments on Shanghai Tech, UCF-CC-50 and UCF-QNRF, the results show that the network has high accuracy and robustness.

Key words: crowd counting, Convolutional Neural Network(CNN), density estimation, multi?level features, scale variation, feature fusion

摘要:

针对人群计数方法中存在的尺度变化和多层级特征融合不佳的问题,基于U-Net的编码器-解码器网络结构,提出一种自适应特征融合网络,来进行精准的人群计数。提出自适应特征融合模块,根据解码器分支的需要,高效地聚合编码器分支提取的高层语义信息和底层的边缘信息;提出自适应上下文信息提取器,从不同感受野下提取多尺度的上下文信息并自适应加权融合,提高网络对于人头尺度变化的鲁棒性。在ShanghaiTech、UCF-CC-50和UCG-QNRF上的实验表明,与目前主流的人群计数算法相比,该算法具有更强的准确性和鲁棒性。

关键词: 人群计数, 卷积神经网络, 密度估计, 多层级特征, 尺度变化, 特征融合