Computer Engineering and Applications ›› 2020, Vol. 56 ›› Issue (17): 181-186.DOI: 10.3778/j.issn.1002-8331.1909-0305

Previous Articles     Next Articles

3D Point Cloud Classification Based on K-means Clustering

MA Jinghui, PAN Wei, WANG Ru   

  1. Information Engineering College, Capital Normal University, Beijing 100048, China
  • Online:2020-09-01 Published:2020-08-31



  1. 首都师范大学 信息工程学院,北京 100048


Aiming at the problem that the performance of 3D point-cloud classification algorithm is affected by point-cloud sparsity and disorder, this paper proposes an improved algorithm based on PointNet which is proposed in 2018. Firstly, during the point-cloud preprocessing, redundant data are removed from dense point-clouds to reduce the complexity of subsequent work. And at the same time, triangle interpolation is used in the sparse point-cloud data to make the classification more precise. Secondly, it uses K-means algorithm to cluster the preprossed data and put them through the PointNet network in parallel. The distribution characteristics of point-cloud can be obtained by this way. Experiments are made on ModelNet10/40 and compared with some popular classification algorithms based on deep learning. The results show that the performance of this new algorithm is the best in the above algorithms while the training time is greatly reduced.

Key words: K-means clustering analysis, 3D point cloud classification, triangle interpolation



关键词: K-means聚类分析, 三维点云分类, 三角形插值