Computer Engineering and Applications ›› 2019, Vol. 55 ›› Issue (8): 171-174.DOI: 10.3778/j.issn.1002-8331.1801-0055

Previous Articles     Next Articles

Face Region Segmentation Method Based on Deep Network

DU Xingyue, DONG Hongwei, YANG Zhen   

  1. College of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2019-04-15 Published:2019-04-15

基于深度网络的人脸区域分割方法

杜星悦,董洪伟,杨  振   

  1. 江南大学 物联网工程学院,江苏 无锡 214122

Abstract: Semantic segmentation is a popular theme in recent years. The two-dimensional face image segmentation technology is important for the field of robot industry, the head pose prediction, three-dimensional face recognition, face segmentation, facial animation and other fields. Because of the shortage of the existing segmentation algorithm, it proposes a face region segmentation method based on deep network. The experimental results show that the algorithm is of high precision and good robustness, which has practical application significance.

Key words: semantic segmentation, two dimensional face, region segmentation, deep network

摘要: 语义分割是近年来比较热的一个主题,而其中对二维人脸图片的区域分割技术的研究,对机器人应用,人脸头部姿势预测,三维人脸识别,分割,动画等方面有重要促进意义。由于目前的人脸区域分割算法在精度上存在一定不足,提出了基于深度网络的人脸区域分割方法,并进行了实验。实验结果表明该算法相较于以前的一些方法精度更高,鲁棒性好,有实际应用意义。

关键词: 语义分割, 二维人脸, 区域分割, 深度网络