Computer Engineering and Applications ›› 2018, Vol. 54 ›› Issue (5): 1-6.DOI: 10.3778/j.issn.1002-8331.1707-0365

Previous Articles     Next Articles

Multiple attribute group decision making method based on Pythagorean fuzzy power weighted average operator

DING Heng,LI Yanlai   

  1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China
  • Online:2018-03-01 Published:2018-03-13

基于毕达哥拉斯模糊幂加权平均算子的多属性群决策方法

丁  恒,李延来   

  1. 西南交通大学 交通运输与物流学院,成都 610031

Abstract: In this paper, the multi-attribute group decision making problem is investigated under the Pythagorean fuzzy environment. First, it introduces Pythagorean fuzzy information into power weighted average operator to put forward the Pythagorean Fuzzy Power Weighted Average(PFPWA) operator. And then the basic properties of PFPWA are analyzed. Then, a new multiple attribute group decision making method is built based on PFPWA using Pythagorean Fuzzy Number(PFN) as input. The method can give decision makers a more flexible information input environment by using PFN, and it can also consider the authority of the decision makers and the credibility of evaluations in the aggregation process. Finally, an example is given to show the feasibility and effectiveness of the proposed method.

Key words: power weighted average operator, Pythagorean fuzzy number, multiple attribute group decision making

摘要: 研究了毕达哥拉斯模糊环境下的多属性群决策问题。首先,将毕达哥拉斯模糊信息引入幂平均加权算子,提出毕达哥拉斯模糊幂加权平均(PFPWA) 算子,并研究所提算子的基本性质。然后,在毕达哥拉斯模糊数(PFN) 为信息输入的框架内,提出基于毕达哥拉斯模糊幂加权平均算子的群决策方法。所提出的方法使用毕达哥斯拉信息使得决策者的信息表达更加灵活,并且在信息集结过程中采用幂加权平均算子能够同时考虑专家权威与评估信息的可信度。最后,通过案例分析验证了所提方法的可行性和有效性。

关键词: 幂加权平均算子, 毕达哥拉斯模糊数, 多属性群决策