Computer Engineering and Applications ›› 2018, Vol. 54 ›› Issue (14): 52-55.DOI: 10.3778/j.issn.1002-8331.1705-0081
Previous Articles Next Articles
SU Zhenhua
Online:
Published:
苏振华
Abstract: Determining the crossing number of an arbitrary graph is NP-complete problem. There are known few results on the crossing numbers of Cartesian product for complete multipartite graphs with stars. This paper uses the structure characteristics of [K1,1,2,2] and the contraction operations, obtains the relationship of crossing numbers of [K1,1,2,2×Sn] with [K1,1,2,2,n] is [cr(K1,1,2,2×Sn)=cr(K1,1,2,2,n)+4n].
Key words: crossing number, Cartesian product, star, complete multipartite graph
摘要: 确定图的交叉数是一个NP-完全问题。目前关于完全多部图与星图的积图交叉数的结果较少。根据完全多部图[K1,1,2,2]的结构特点,引入收缩的方法,得到了积图[K1,1,2,2×Sn]交叉数与完全多部图[K1,1,2,2,n]交叉数的关系为[cr(K1,1,2,2×Sn)=cr(K1,1,2,2,n)+4n]。
关键词: 交叉数, 笛卡尔积, 星图, 完全多部图
SU Zhenhua. Crossing number of K1,1,2,2×Sn[J]. Computer Engineering and Applications, 2018, 54(14): 52-55.
苏振华. [K1,1,2,2×Sn]的交叉数[J]. 计算机工程与应用, 2018, 54(14): 52-55.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.1705-0081
http://cea.ceaj.org/EN/Y2018/V54/I14/52