Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (3): 145-149.

Previous Articles     Next Articles

Linear dimension reduction by factors analysis discriminant criterion

GONG Zhile1, ZHANG Shaolong1, LIAO Haibin2   

  1. 1.School of Computer and Software Engineering, Pingdingshan Institute of Industry Technology, Pingdingshan, Henan 467000, China
    2.School of Computer Science and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
  • Online:2016-02-01 Published:2016-02-03

因子分析判别准则的线性降维方法研究

巩知乐1,张少龙1,廖海斌2   

  1. 1.平顶山工业职业技术学院 计算机与软件工程学院,河南 平顶山 467000
    2.湖北科技学院 计算机科学与技术学院,湖北 咸宁 437100

Abstract: The stability and discrimination of low-dimensional feature extracting?are the key problems in the study of the pattern recognition. In terms of the practical application, this paper puts forward the discriminate criterion based on factors analysis and the in-depth study of Fisher discriminate criterion. It aims to solve the problem of the suboptimal definition for Fisher criterion with between-class scatter matrix and within-class scatter matrix. The experimental comparison between the synthetic data and real face data sets demonstrates that the presented algorithm possesses better robustness to deal with the data centralized edge and facial variations of expressions or poses than Fisher discriminate criterion.

Key words: feature extraction, linear dimension reduction, Fisher criterion, factors analysis, face recognition

摘要: 提取稳定且具有判别性的低维特征是模式识别研究中的关键问题。在深入研究Fisher判别准则的基础上,从因子分析的实际角度考虑,提出基于因子分析的判别准则,解决Fisher判别准则类内和类间散布矩阵非最优定义问题。通过在合成数据集和真实人脸数据集上进行实验比较表明,该方法在解决数据集中的边缘类和人脸的表情、姿态变化等问题上比Fisher判别准则更优。

关键词: 特征提取, 线性降维, Fisher判别准则, 因子分析, 人脸识别