Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (23): 236-243.

Previous Articles     Next Articles

Research on electrical load prediction based on random forest algorithm

LI Wanhua1,2, CHEN Hong3, GUO Kun1,2, GUO Songrong1,2, HAN Jiamin1,2, CHEN Yuzhong1,2   

  1. 1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
    2.Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou 350116, China
    3.State Grid Electric Power Company, Fuzhou 350001, China
  • Online:2016-12-01 Published:2016-12-20

基于随机森林算法的用电负荷预测研究

李婉华1,2,陈  宏3,郭  昆1,2,郭松荣1,2,韩嘉民1,2,陈羽中1,2   

  1. 1.福州大学 数学与计算机科学学院,福州 350116
    2.福建省网络计算与智能信息处理重点实验室,福州 350116
    3.国网信通亿力科技有限责任公司,福州 350001

Abstract: In order to improve the accuracy of electricity load prediction and solve the problem of simulating the actual distribution of electricity load, it implements the classification model, regression model and time series model of combining the Weka which are based on random forest to forecast the electricity load data of a certain province. After a large number of experiments and evaluation on different models, it finds that the three models can reasonably predict the future of electricity load data. In addition, under the same evaluation index the model which combines the random forest algorithm and time series of WEKA can get better result when predicting the future moment of electricity load data.

Key words: electrical load prediction, random forest, classification, regression, time series

摘要: 为了解决当下用电负荷预测精度不高,难以很好模拟实际用电负荷的分布情况而不能对未来的负荷数据进行合理预测的问题,实现了基于随机森林的分类模型、回归模型以及结合Weka的时间序列模型,对某省份的负荷数据进行预测,通过对不同模型的大量的实验及评估,发现这三个模型皆能合理地预测未来的用电负荷数据。此外,在同一评估指标下随机森林算法结合WEKA中的时间序列模型的方法能够较好地预测未来时刻的负荷数据。

关键词: 用电负荷预测, 随机森林, 分类, 回归, 时间序列